DIPLOMA IN ENGINEERING AND TECHNOLOGY

3

DEPARTMENT OF MECHANICAL ENGINEERING

IMPLEMENTED FROM 2020 – 2021

SESHASAYEE INSTITUTE OF TECHNOLOGY (AUTONOMOUS)

TIRUCHIRAPPALLI – 620 010

CONTENTS

SI. No.	PARTICULARS	PAGE No.
	Preface	
	Acknowledgement	
1	Department Vision, Mission PO, and PEOs	
2	Regulation	
3	Salient features of Diploma programme	
4	Employment opportunities	
5	Competency Profile	
6	Deriving curriculum areas from CompetencyProfile	
7	Curriculum Outline	
8	Scheme of Examination	
9	Equivalent papers of E Scheme and F	
10	Details of Addition and Deletion of subjects	
11	Horizontal and Vertical Organization of the Subject	
12	Detailed Contents of various Subjects	
13	Model Question Papers	

PREFACE

The wave of liberalization and globalization has created an environment for free flow of information and technology through fast and efficient means the world over. This has lead to shrinking of world, bringing people from different cultures and environment together, giving rise to a global village. A shift has been taking place in India from closed economy to knowledge based and opens economy. In order to cope-up with the challenges of handling new technologies, materials and methods, we have to develop human resources having appropriate knowledge, professional skills and attitude. Technical education system is one of the significant components for human resource development. Polytechnics play an important role in meeting the requirements of trained technical manpower for industries and field organizations. The initiatives being taken by to revise the curriculum as per the needs of the industry are laudable.

In order to meet the requirements of future technical manpower, constant efforts have to be made to identify new employment opportunities, carryout activity analysis and design need based curricula of diploma programmes. This curriculum document has been designed by identifying job potential and competency profile of diploma holders leading to identification of curriculum areas for the course. It is needless to emphasize that the real success of the diploma programme depends upon its effective implementation. This will require harnessing and effective utilization of resources. In addition to acquisition of appropriate physical resources, the availability of competent and qualified faculty is essential. It is time for the managers of technical education system to reorganize the system to accept the challenges of both quantitative and qualitative expansion of technical education.

There are various online training facilities created by the Government of India through MHRD for the benefit of both the Teaching and Student community. Facilities like Spoken-Tutorial, SWAYAM, NPTEL, e-Yantra must be exploited to its fullest extent to reap the benefits of interactive electronic media for teaching-learning process. It is hoped that polytechnics will carry out job market research on a continuous basis to identify the new skill requirements and develop innovative methods of course offering and thereby infuse dynamism in the system.

PRINCIPAL & CHAIRMAN

ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance and guidance received from the

following persons:

- i) Commissioner and Principal Secretary, Directorate of Technical Education, Govt. of Tamil Nadu.
- ii) Principal & Chairman, Seshasayee Institute of Technology, Trichy for initiating this project on designing of curriculum.
- iii) Dr. C.SATHIYA NARAYANAN, Associate Professor, Production

Engineering Department, N.I.T, Trichy, Dr. M.CHANDRASEKAR, Assistant

Professor (Sr.Gr) Department of Mechanical engineering ,Anna university

,BIT Campus, Trichy, Mr. N.RAJU, Rtd H.O.D (MECHANICAL), Alumni,

Seshasayee Institute Of Technology, Mr. K.BALASUBRAMANIAN, Senior

Section Engineer Wheel shop, Railway Workshop, Golden Rock, Trichy for

their professional inputs and support in the design of this curriculum.

 iv) All the faculty members of the Mechanical Engineering department for their Sustained effort and support in the design of this curriculum and documentation.

Coordinator

DEPARTMENT OF MECHANICAL ENGINEERING

VISION, MISSION, PEO and PSO STATEMENT

VISION

To produce high self-esteem and technical expertise who can adapt themselves for the changing trends of industrial and social requirements by effective teaching and learning methods.

MISSION

- To maintain best quality of education by incorporating changing trends of industry in curriculum to satisfy all stake holders.
- To produce leaders who can serve society and nation by finding solutions to region wise and global wise community problems.
- To create competent professional who are trained in the design and development of mechanical engineering systems to accept any challenges that arises in rapidly changing technology.
- To instill confidence amongst the students as an individual or as a team player by involving them in organizing programmes and events.
- To empower the students with life skill programs and entrepreneurship Programs.

PEO

- 1. Use the knowledge of mechanical engineering to develop concepts that brings out solution for the real world challenges.
- 2. Analyze the design and use skills in order to formulate and solve mechanical engineering problems.
- 3. Practice mechanical engineering in a reasonable professional and ethical manner.

PSO

- 1. Distinct and maintain highest standards in the fields of design manufacturing, thermal and automobile.
- 2. Suit to current technologies and have a zeal to find out solutions to problems of industry and world in the respective fields.

Program Outcomes (PO)

1. Basic and Discipline specific knowledge:

Apply knowledge of basic mathematics, science and engineering fundamentals and engineering specialization to solve theengineering problems.

2. Problem analysis:

Identify and **analyze** well-defined engineering problems using codified standard methods.

3. Design/ development of solutions:

Design solutions for well-defined technical problems and assist with the design of systems components or processes to meet specified needs.

- 4. Engineering Tools, Experimentation and Testing: Apply modern engineering tools and appropriate technique to conduct standard tests and measurements.
- 5. Engineering practices for society, sustainability and environment: Apply appropriate technology in context of society, sustainability, environment and ethical practices.
- Project Management: Use engineering management principles individually, as a Team member or a leader to manage projects and effectively communicate about well-defined engineering activities.
- 7. Life-long learning: Ability to analyze individual needs and engage in updating in the context of technological changes.

2.R E G U L A T I O N S

DIPLOMA COURSES IN ENGINEERING (TERM PATTERN) (Implemented from 2020- 2021) F- SCHEME

(Common to all Programmes)

2.1. Description of the Course:

a.Full Time (3 years)

The Programme for the Full Time Diploma in Engineering shall extend over a period of three academic years, consisting of 6 terms* and the First Year is common to all Engineering Branches.

b.Sandwich (31/2 years)

The Course for the Sandwich Diploma in Paper Technology shall extend over a period of three and half academic years, consisting of 7 terms* and the First Year is common to all Engineering Branches. The subjects of three years full time diploma course being regrouped for academic convenience.During 4th and/or during 7th term the students undergo industrial training for six months. Industrial training examination will be conducted after completion of every 6 months of industrial training.

* Each term will have 16 weeks duration of study with 35 hrs. / Week for Regular Diploma Courses.

2.2. Condition for Admission:

Condition for admission to the Diploma courses shall be required to have passed in The S.S.L.C Examination of the Board of Secondary Education, Tamil Nadu.

(Or)

The Anglo Indian High School Examination with eligibility for Higher Secondary Course in Tamil Nadu.

(Or)

The Matriculation Examination of Tamil Nadu.

(Or)

Any other Examinations recognized as equivalent to the above by the Board

of Secondary Education, Tamil Nadu.

Note: In addition, at the time of admission the candidate will have to satisfy certain minimum requirements, which may be prescribed from time to time.

2.3. Admission to Second year (Lateral Entry):

A pass in HSC (academic) or (vocational) courses mentioned in the Higher Secondary Schools in Tamil Nadu affiliated to the Tamil Nadu Higher Secondary Board with eligibility for University Courses of study or equivalent examination & Should have studied the following courses.

SI.	courses	H.Sc Academic	H.Sc Vocati	Industrial		
No.			Subjects stu	ıdied	Training	
		Studied any three of the following subjects	Studied any three of the following subjects	Vocational subjects	Institutes Courses	
1.	All the Regular and Sandwich Diploma Courses	 Maths Physics Chemistry Computer Science Electronics Information Technology Biology Informatics Practices Bio Technology Technical Vocational subject Agriculture Engineering Graphics Business Studies Entrepreneurship 	 Maths Physics Chemistry Computer Science Electronics Information Technology Biology Informatics Practices Bio Technology Technical Vocational subject Agriculture Engineering Graphics Business Studies Entrepreneurship 	Related Vocational Subjects Theory& Practical	2 years course to be passed with appropriat e Trade	

A pass in 2 Years ITI with appropriate Trade or Equivalent examination.

• For the Diploma Programmes related with Engineering/Technology, the related /

equivalent courses prescribed along with Practical's may also be taken for arriving the eligibility.

- Programmes will be allotted according to merit through counselling by the Principal as per communal reservation.
- Candidates who have studied Commerce Courses are not eligible for Engineering Diploma Programmes.

2.4. Age Limit:

No Age limit.

2.5. Medium of Instruction:

English

2.6. Eligibility for the Award of Diploma:

No candidate shall be eligible for the Diploma unless he/she has undergone the prescribed course of study for a period of not less than 3/3 ½ academic years (Full Time/Sandwich), affiliated to the State Board of Technical Education and Training, Tamil Nadu, when joined in First Year and 2/2 ½ years (Full Time/Sandwich), if joined under Lateral Entry scheme in the second year and passed the prescribed examination.

The minimum and maximum period for completion of Diploma Programmes are given below:

Diploma Programmes	Minimum Period	Maximum Period
Full Time	3 Years	6 Years
Full Time (Lateral Entry)	2 Years	5 Years
Sandwich	3½ Years	6½ Years
Sandwich (Lateral Entry)	2 ¹ ⁄ ₂ Years	5½ Years

This will come into effect from F Scheme onwards i.e. from the academic year 2020-2021.

2.7. Programmes of Study and Curriculum outline

The Programmes of study shall be in accordance with the syllabus prescribed from time to time, both in theory and practical courses.

The curriculum outline is given in Annexure – I.

2.8. Examinations:

Autonomous Examinations in all Programmes of all the terms under the scheme of examinations will be conducted at the end of each term.

The internal assessment marks for all the courses will be awarded on the basis Of continuous assessment earned during the term concerned. For each course, 25 marks are allotted for internal assessment. Autonomous Examinations are conducted for 100 marks and reduced to 75.

The total marks for result are 75 + 25 = 100 Marks.

2.9. Continuous Internal Assessment:

A. For Theory Courses:

The Internal Assessment marks for a total of 25 marks, which are to be Distributed as follows:

i) Course Attendance

5 Marks

(Award of marks for subject attendance to each subject Theory/Practical will be as per the range given below)

80 % - 83 %	1 MARK
84 % - 87 %	2 MARKS
88 % - 91 %	3 MARKS
92 % - 95 %	4 MARKS
96 % - 100 %	5 MARKS

ii) Test # 10 Marks

Two Tests each of 2 hours duration for a total of 50 marks are to be conducted. Average of these two test marks will be taken and the marks to be reduced to: 05 Marks

The Test – III is to be the Model Examination covering all the five units and the marks obtained will be reduced to: **05 Marks**

Test	Units	When To Conduct	Marks	Duration
Test I	Unit – I & Half of Unit II	End of 6th week	50	2 Hrs
Test II	Remaining Half of Unit II & III	End of 12th week	50	2 Hrs
Test III	Model Examination: Covering all the 5 Units. (Autonomous Examinations- Question paper-pattern).	End of 16th week	100	3 Hrs

From the Academic Year 2020 – 2021 onwards.

Question Paper Pattern for the Cycle Test : (Test - I & Test- II) :

Part A Type questions (Any 4 out of 6 questions) : 4 Questions × 2 mark **08 marks**

Part B Type questions (Any 4 out of 6 questions) : 4 Questions × 3 marks 12 marks

Part C Type questions (Either or)

Total 50 marks

10 Marks

: 3 Questions × 10 marks 30 marks

Assignment

- Written Assignment 4 Marks
- Multiple Choice Questions 3 Marks
- Seminar Presentation 3 Marks
- Total 10 Marks

iii) Assignment

For each course Two Assignments are to be given each for 10 marks and the average marks scored should be reduced for 4 marks.

iv) Multiple Choice Questions

For each course one MCQ test are to be given each for 30 marks and the average marks scored should be reduced for 3 marks.

3 Marks

4 Marks

3 Marks

The students have to select the topics either from their course or general courses which will help to improve their grasping capacity as well as their capacity to express the subject in hand. The students will be allowed to prepare the material for the given topic using the library hour and they will be permitted to present seminar (For First and Second Year, the students will be permitted to present the seminar as a group not exceeding six members and each member of the group should participate in the presentation. For the Third Year, the students should present the seminar individually.) The seminar presentation is mandatory for all theory courses and carries 3 marks for each theory course. The respective course faculty may suggest topics to the students and will evaluate the submitted in writing and 1 ½ marks for the seminar presentation). For each subject minimum of two seminars are to be given and the average marks scored should be reduced to 3 marks.

All Test Papers, Assignment Papers / Notebooks and the seminar presentation written material after getting the signature with date from the students must be kept in safe custody in the department for verification and audit. It should be preserved for one term after publication of Board Exam results and produced to the flying squad and the inspection team at the time of inspection/verification.

B. For Practical Subjects:

The Internal Assessment mark for a total of 25 marks which are to be distributed as follows:-

a) Attendance (Award of marks same as theory subjects)	: 5 Marks
b) Procedure/ observation and tabulation/ Other Practical related Work	: 10 Marks
c) Record writing	: 10 Marks
TOTAL	: 25 Marks

All the Experiments/Exercises indicated in the syllabus should be completed and the same to be given for final Autonomous examinations.

The observation note book / manual should be maintained for 10 marks. The observation note book / manual with sketches, circuits, programme, reading and calculation written by the students manually depends upon the practical subject during practical classes should be evaluated properly during the practical class hours with date.

The Record work for every completed exercise should be submitted in the subsequent practical classes and marks should be awarded for 10 marks for each exercise as per the above allocation.

At the end of the term, the average marks of all the exercises should be calculated for 20 marks (including Observation and Record writing) and the marks awarded for attendance is to be added to arrive at the internal assessment mark for Practical. (20+5=25 marks)

Only regular students, appearing first time have to submit the duly signed bonafide record note book/file during the Autonomous Practical Examinations.

All the marks awarded for Assignments, Tests, Seminar presentation and Attendance should be entered periodically in the Personal Theory Log Book of the staff, who is handling the theory subject.

The marks awarded for Observation, Record work and Attendance should be entered periodically in the Personal Practical Log Book of the staff, who is handling the practical subject.

2.10. Communication Skill Practical, Computer Application Practical and Physical Education:

The Communication Skill Practical and Computer Application Practical with more emphasis are being introduced in First Year. Much Stress is given to increase the Communication skill and ICT skill of students. As per the recommendation of MHRD and under Fit India scheme, the Physical education is introduced to encourage students to remain healthy and fit by including physical activities and sports.

2.11. Project Work and Internship:

The students of all the Diploma Programme have to do a Project Work as part of the Curriculum and in partial fulfilment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise. The Project work must be reviewed twice in the same term. The project work is approved during the V term by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work & Internship:

Project Review I ... 10 marks

Project Review II ... 10 marks

Attendance ... 05 marks (Award of marks same as theory subject pattern)

TOTAL ... 25 MARKS

Proper record should be maintained for the two Project Reviews and preserved for one term after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

b) Allocation of Marks for Project Work & Internship in Autonomous Examinations:

Demonstration/Presentation	25 marks
Report	25 marks
Viva Voce	30 marks
Internship Report	20 marks
TOTAL	100* MARKS

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c) Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V term during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work & Internship Autonomous examination.

2.12. Scheme of Examinations:

The Scheme of examinations for courses is given in Curriculum outline.

2.13. Criteria for Pass:

 No candidate shall be eligible for the award of Diploma unless he/she has undergone the prescribed course of study successfully in an institution approved by AICTE and affiliated to the State Board of Technical Education & Training, Tamil Nadu and pass all the subjects prescribed in the curriculum.
 A candidate shall be declared to have passed the examination in a course if he/she secures not less than 40% in theory subjects and 50% in practical subjects out of the total prescribed maximum marks including both the Internal Assessment and the Autonomous Examinations marks put together, course to the condition that he/she secures at least a minimum of 40 marks out of 100 marks in the Autonomous Theory Examinations and a minimum of 50 marks out of 100 marks in the Autonomous Practical Examinations.

2.14. Classification of successful candidates:

Classification of candidates who will pass out the final examinations from April 2023 onwards (Joined first year in 2020 -2021) will be done as specified below.

First Class with Superlative Distinction:

A candidate will be declared to have passed in **First Class with Superlative Distinction** if he/she secures not less than 75% of the marks in all the courses and passes all the terms in the first appearance itself and passes all courses within the stipulated period of study $2 / 3 / 3\frac{1}{2}$ years [Full time (lateral entry)/Full Time/Sandwich] without any break in study.

First Class with Distinction:

A candidate will be declared to have passed in **First Class with Distinction** if he/she secures not less than 75% of the aggregate marks in all the terms put together and passes all the terms except the I and II term in the first appearance itself and passes all courses within the stipulated period of study $2/3/3\frac{1}{2}$ years [Full time(lateral entry)/Full Time/Sandwich] without any break in study.

First Class:

A candidate will be declared to have passed in **First Class** if he/she secures not less than 60% of the aggregate marks in all the terms put together and passes all the courses within the stipulated period of study 2 / 3 / 3¹/₂ years [Full time(lateral entry)/Full Time/Sandwich] without any break in study.

Second Class:

All other successful candidates will be declared to have passed in **Second Class**. The above classifications are also applicable for the Sandwich students who pass out Final Examination from October 2023 /April 2024 onwards (both joined First Year in 2020 -2021).

2.15. Duration of a period in the Class Time Table:

The duration of each period of instruction is 1 hour and the total period of instruction hours excluding interval and lunch break in a day should be uniformly maintained as 7 hours corresponding to 7 periods of instruction (Theory & Practical).

3.SALIENT FEATURES OF THE DIPLOMA PROGRAMME IN MECHANICAL ENGINEERING

Name of the Programme	DIPLOMA IN MECHANICAL ENGINEEING
Duration of the Programme	Three years (Six Terms)
Entry Qualification	Matriculation or equivalent as prescribed by State
	Board of Technical Education, Tamil Nadu
Intake	60+12
Pattern of the Programme	Term Pattern
Ratio between theory and practical	50:50 (Approximately)

4. EMPLOYMENT OPPORTUNITIES

Employment opportunities for Diploma holder in Mechanical Engineering are visualized in following industries at various levels / positions.

(1) Manufacturing Industries

- Production, Planning & Control
- Production Engineering and shop floor control
- Process Engineering and Methods control
- Product design & development
- Materials management
- Research and development

(2) Service industries

- Repair and maintenance of machines
- Repair and maintenance of automobiles
- Repair and maintenance of engines
- Repair and maintenance of other equipments

(3) Consultancy

- Design& Drawing consultants
- CNC machine program consultants
- Maintenance consultants

5. COMPETENCY PROFILE

Keeping in view the employment opportunities of Diploma holders in Mechanical Engineering, the programme is aimed at developing following knowledge and skills in the students:

- 1. Basic understanding of concepts and principles of Mechanical engineering so as to enable the students to apply the knowledge.
- 2. Development of communication and interpersonal skills for effective functioning in the world of work.
- 3. Ability to read and interpret drawings related to Mechanical Engg.
- 4. Knowledge of various materials used in Mechanical Engg., their properties and specifications.
- 5. Ability to prepare plan, section and elevation of equipment, devices and components of machines.
- 6. Ability to understand various manufacturing processes, allied areas and automation in manufacturing.
- 7. Understanding of fluid flow, Hydraulics & Pneumatic circuits.
- 8. Understanding the concepts of Thermodynamics, Thermodynamic processes, working of Engines, automobiles and energy sources.
- 9. Ability to Design the machine elements.
- 10. Ability to calculate the estimate time for producing the components and cost of the products.
- 11. Development of generic skills of thinking and problem solving, communication attitudes and value system for effective functioning in industrial sectors.
- 12. Appreciation of the need of clean and green environment and its deterioration by various emissions from industry and preventive procedures and knowledge of safety regulations.
- 13. Understanding of the basic principles of managing men, material and machines / equipment for the production of components and others.
- 14. Proficiency in the use of computers.
- 15. Understanding about automation

- 16. Basic manual and machining skills for maintaining the quality of materials.
- 17. Knowledge of properties of materials used for manufacturing.
- 18. Development of good personality in order to have effective communication and professional ethics.
- 19. To Instill Confidence amongst students to venture into any start up and become successful entrepreneur

6. CURRICULUM AREAS AS DERIVED FROM COMPETENCY PROFILE

The following curriculum areas have been derived based on competency profile.

S.NO	Competency	Curriculum Areas / Subjects
1.	Basic understanding of concepts and principles related to applied sciences like physics, chemistry and mathematics.	Applied physics Applied chemistry Applied mathematics
2.	To instill confidence amongst students to venture into any business become successful entrepreneur	Entrepreneurship and startup
3.	Understanding of basic concepts and principles of mechanical, electrical and civil engineering.	Applied Mechanics General workshop practice
4.	Ability to read and interpret drawings related to Mechanical Engg. Etc,	Engineering Graphics,Machine drawing and CAD practical
5.	Knowledge of various materials used in Mechanical Engg., their properties and specifications.	Strength of materials
6.	Ability to prepare plan, section and elevation of equipments, devices and components of machines.	Machine drawing and CAD practical
7.	Proficiency in the use of computers	Computer applications practical
8.	Ability to understand various manufacturing processes, allied areas and automation in manufacturing	Manufacturing Technology - I Manufacturing Technology -II Computer Integrated and

		manufacturing
9.	Understanding of fluid flow, Hydraulics & Pneumatic circuits.	Fluid mechanics and fluid power
10.	Understanding the concepts of Thermodynamics, Thermodynamic processes, working of Engines, automobiles and Energy sources	Thermal Engineering –I Thermal Engineering -II Automobile engineering Green energy and energy conservation
11.	Ability to Design the machine elements.	Design of machine elements
12.	Ability to calculate the estimate time for producing the components and cost of the products.	Industrial Engineering and management
13.	Development of generic skills of thinking and problem – solving, communication attitudes and value system for effective functioning in industrial sectors.	Industrial Engineering and management
14.	Understanding of the basic principles of managing men, material and machines / equipment for the production of components and others.	Industrial Engineering and management
15.	Understanding about automation	Mechatronics , electrical drives and control.
16	Knowledge of different welding concepts	Welding technology
17	Understanding different methods used in refrigeration and air conditioning	Refrigeration and air conditioning
18	Understanding concepts of robotics and their	Industrial robotics and 3D printing

	application in manufacturing	
19	Knowledge of electric vehicle and its effective utilization in Indian road condition	E Vehicle Technology and Policy
20	Understanding concepts and different methods of measurements	Measurements and metrology

8. CURRICULUM OUTLINE

a. Basic courses

- 1. Strength of Materials
- 2. Fluid mechanics and Fluid power
- 3. Manufacturing technology -I
- 4. Strength of materials & Fluid mechanics practical
- 5. Manufacturing technology I practical
- 6. Thermal Engineering -I
- 7. Manufacturing technology -II
- 8. Machine drawing and CAD practical
- 9. Manufacturing technology -II Practical
- 10. Thermal Engineering -II
- 11. Thermal Engineering practical

b. Core courses

- 12. Measurements and metrology
- 13. Measurements and metrology practical
- 14. Design of machine elements
- 15. Computer integrated manufacturing
- 16. Automobile engineering
- 17. Green energy and energy conservation
- 18. Solid modelling practical
- 19. Computer integrated manufacturing ractical
- 20. Automobile engineering ractical
- 21. Green energy and energy conservation practical
- 22. Industrial engineering and management
- 23. Mechatronics
- 24. Welding technology
- 25. Refrigeration and air conditioning
- 26. Industrial robotics and 3D printing
- 27. Process automation practical

Implemented from 2020 - 2021

- 28. Welding technology practical
- 29. Refrigeration and air conditioning practical
- 30. Industrial robotics and 3D printing practical

c. Diversified courses

- 31. Electrical drives and control
- 32. Electrical drives and control practical
- 33. Electric vehicle technology policy
- 34. Entrepreneurship & startup
- 35. Project work and internship.

d. Value added

- 36. Concurrent Career Development
- 37. Universal Human Values.

10. CURRICULUM OUTLINE & SCHEME OF EXAMINATION

			Hours per week			Scheme Of		ark		of rs)	
SI. No	Course Code	Course Title	Theory	Practical	Total	Credit	Internal	External*	Total Mar	Minimum Ma For Pass	Duration c exam (Hou
1.	3F 3201	Strength of Materials	5	-	5	5	25	100	100	40	3
2.	3F 3202	Fluid Mechanics and Fluid Power	5	-	5	5	25	100	100	40	3
3.	3F 3203	Manufacturing Technology - I	5	-	5	5	25	100	100	40	3
4.	3F 3401	Electrical Drives and Control	5	-	5	5	25	100	100	40	3
5.	3F 3204	Strength of Materials & Fluid Mechanics Practical	-	4	4	2	25	100	100	50	3
6.	3F 3402	Electrical Drives and Control Practical	-	4	4	2	25	100	100	50	3
7.	3F 3205	Manufacturing Technology - I Practical	-	4	4	2	25	100	100	50	3
		20	12	32	26	175		700			
Physical education				2							
Library				1							
		Total			35	26					

TERM - III

*Autonomous examinations will be conducted for 100 marks and will be reduced to

75 marks

IV TERM

			Hou	Hours per week			Scheme Of Examination		Ł	/ark	of urs)
SI. No	Course Code	Course Title	Theory	Practical	Total	Credit	Internal	External*	Total Ma	Minimum N For Pass	Duration exam (Ho
1.	3F 4206	Thermal Engineering - I	5	-	5	5	25	100	100	40	3
2.	3F 4207	Manufacturing Technology – II	5	-	5	5	25	100	100	40	3
3.	3F 4301	Measurements and Metrology	5	-	5	5	25	100	100	40	3
4.	3F 4403	E Vehicle Technology Policy	4	-	4	4	25	100	100	40	3
5.	3F 4208	Machine Drawing and CAD Practical	-	5	5	3	25	100	100	50	3
6.	3F 4302	Measurements and Metrology Practical	-	4	4	2	25	100	100	50	3
7.	3F 4209	Manufacturing Technology practical - II	-	4	4	2	25	100	100	50	3
	L		19	13	32	26	175		700		
		Physical education			2						
		Library			1						
0	25 0006	Total			35	26					
ð	35 0000	Values **				5	25	100	100	40	3

*Autonomous examinations will be conducted for 100 marks and will be reduced to 75 marks

** The total hours allotted for taking UHV is 75 Hrs and will be handled with flexible timings

<u>V TERM</u>

				Hou	Hours per week			Scheme Of Examination		ark	L	l of
SI. No	Cours Code	e	Course Title	Theory	Practical	Total	Credit	Interna	Extern al*	Total Ma	Minimum Mark Fo Pass	Duration exam (Hours
1.	3F 530)3	Design of Machine Elements	6	-	6	6	25	100	100	40	3
2.	3F521	0	Thermal Engineering–II	5	-	5	5	25	100	100	40	3
3.	3F 5304	1 2 3	Computer Integrated Manufacturing Automobile Technology Green Energy and Energy conservation	5	-	5	5	25	100	100	40	3
4.	3F 530)5	Solid Modeling Practical		4	4	2	25	100	100	50	3
5.	3F 521	1	Thermal Engineering Practical		4	4	2	25	100	100	50	3
6.		1	Computer Integrated Manufacturing Practical									
	3F 5306	2	Automobile Engineering practical		4	4	2	25	100	100	50	3
		3	Green Energy and Energy Conservation practical									
7.	3F 540)4	Entrepreneurship & Startup	2	2	4	3	25	100	100	50	3
				18	14	32	25	175		700		
			Physical education			2						
			Library			1						
0	25 000	75	I otal			35	25					
ð	35 000	S	development **				5	25	100	100	40	3

*Autonomous examinations will be conducted for 100 marks and will be reduced to 75 marks

** The total hours allotted for taking CCD is 75 Hrs and will be handled with flexible timings.

<u>VI TERM</u>

				Hou	Hours per week			Scheme Of Examination		г¥	lark	of urs)
SI. No	Cours Code	e	Course Title	Theory	Practical	Total	Credit	Internal	External*	Total Ma	Minimum N For Pass	Duration exam (Hou
1.	3F 630)7	Industrial									
			Engineering and	6		6	6	25	100	100	40	3
			Management									
2.	3F 630)8	Mechatronics	5		5	5	25	100	100	40	3
3.		1	Welding Technology									
	3F 6309	2	Refrigeration and Air conditioning	5		5	5	25	100	100	40	3
		3	Industrial Robotics and 3D Printing									
4.	3F 631	0	Process									
			Automation		5	5	2	25	100	100	50	3
			Practical									
5.	3F	1	Welding Technology Practical									
	6311	2	Refrigeration & Air Conditioning Practical		5	5	2	25	100	100	50	3
		3	Industrial Robotics and 3D Printing Practical									
6.	3F 640)5	Project work and Internship		6	6	3	25	100	100	50	3
				16	16	32	23	175		700		
			Physical education			2						
			Library			1	00					
			I otal			35	23		1			

*Autonomous examinations will be conducted for 100 marks and will be reduced to 75 marks

11.EQUIVALENT PAPERS OF E - SCHEME to F- SCHEME

	E-SCHEME		F-SCHEME
3E 3205	Strength of Materials	3F 3201	Strength of Materials
3E 3206	Fluid Mechanics and Fluid Power	3F 3202	Fluid Mechanics and Fluid Power
3E 3207	Manufacturing Processes	-	NO EQUIVALENT
3E 3301	Machine Drawing	-	NO EQUIVALENT
3E 3208	Strength of Materials & Fluid Mechanics Practical	3F 3204	Strength of Materials & Fluid Mechanics Practical
3E 3209	Metrology and Metallography practical	-	NO EQUIVALENT
3E 3210	Foundry ,Smithy and Welding Practice	-	NO EQUIVALENT

III TERM

IV TERM

	E-SCHEME (SIT)		PROPOSED F-SCHEME(SIT)
3E 4211	Heat Power Engineering	-	NO EQUIVALENT
3E 4212	Special Machines	-	NO EQUIVALENT
3E 4401	Electrical Drives and Control	3F 3401	Electrical Drives and Control
3E 4213	Computer Applications and CAD Practical	-	NO EQUIVALENT
3E 4214	Heat Power Engineering Practical	3F 5211	Thermal Engineering Practical
3E 4302	Electrical Drives and Control Practical	3F 3402	Electrical Drives and Control Practical
3E 4215	Machining Practice-I	-	NO EQUIVALENT

V TERM

		E-SCHEME		F-SCHEME
3E 5303		Design of Machine Elements	3F 5303	Design of Machine Elements
3E 5304	4	Automobile Engineering	3F 5304-2	Automobile Technology
3E 5305	5	Mechatronics	3F 6308	Mechatronics
3E 5306	1	ELECTIVE Theory Renewable energy sources and energy conservation. Total Quality Management	-	NO EQUIVALENT
3E 5307	7	Automobile Engineering Practical	3F 5306-2	Automobile Engineering practical
3E 5403		Machining Practice-II& Machine tool testing and Maintenance practice	-	NO EQUIVALENT
3E 5308	3	Life and employability skills practical	-	NO EQUIVALENT

VI TERM

	E-SCHEME		F-SCHEME
3E 6309	Industrial Engg. And Management	3F 6307	Industrial Engineering and Management
3E 6310	Computer Aided Design and Manufacturing	3F 5304-1	Computer integrated manufacturing
3E 6311	ELECTIVE THEORY-II 1.Welding Technology	3F 6309-1	ELECTIVE THEORY Welding Technology
	2.Refrigeration and Air conditioning	3F 6309-2	Refrigeration and Air conditioning
3E 6313	Process Automation Practical	3F 6310	Process Automation Practical
3E 6314	Computer Aided Design and Manufacturing practical	3F 5306-1	Computer integrated manufacturing practical
3E 6312	ELECTIVE PRACTICAL 1.Industrial Welding Practice	3F 6311-1	ELECTIVE PRACTICAL Welding Technology Practical
	2. Refrigeration & Air Conditioning Practical	3F 6311-2	Refrigeration & Air Conditioning Practical
3E 6404	Project work	-	NO EQUIVALENT

12.DETAILS OF ADDITION / DELETION OF SUBJECTS

III TERM

E-SCHEME	F-SCHEME	Remarks
Strength of Materials	Strength of Materials	DOTE-N-SCHEME FOLLOWED ADDED Micro and Nano particles.
Fluid Mechanics and Fluid Power	Fluid Mechanics and Fluid Power	ADDED Pressure head, Rota meter, Pressure sensor technologies- classification only. Total Pressure, Centre of pressure on immersed bodies (flat vertical)- Problems. Motion synchronization circuit
Manufacturing Processes	Manufacturing Technology - I	ADDED Arc Welding: Friction Welding-Induction Welding
Machine Drawing		
	Electrical Drives and Control	ADDED Types of stepper motor Microcontroller and circuit breakers DELETION sensors
Strength of Materials & Fluid Mechanics Practical	Strength of Materials & Fluid Mechanics Practical	ADDED Demo Experiments on hydraulic and pneumatic circuits Deflection Test
Metrology and Metallography practical		

	Electrical Drives and Control Practical	NO CHANGE
Foundry ,Smithy and Welding Practice		
	Manufacturing Technology - I Practical	DOTE-N-SCHEME FOLLOWED

IV TERM

E-SCHEME	F-SCHEME	Remarks
Heat Power Engineering		
	Thermal Engineering - I	DOTE-N-SCHEME FOLLOWED DELETION(as the topics are more) combustion equations – stoichiometric air required forcomplete combustion of fuels – excess air – products of combustion - problems – analysis of exhaust gases- Exhaust gas analyser.Dulong's formula
Special Machines		
	Manufacturing Technology – II	DOTE-N-SCHEME FOLLOWED
	Measurements and Metrology	DOTE-N-SCHEME FOLLOWED
	Electric Vehicle Technology Policy	DOTE-N-SCHEME FOLLOWED
Electrical Drives and Control		
Computer Applications and CAD Practical		
Heat Power Engineering Practical	Thermal engineering practical	ADDED Valve time diagram for

		four stroke petrol and diesel Engine Thermal Conductivity measurement using guarded plate apparatus
	Machine Drawing and CAD Practical	ADDED Knuckle joint.
Electrical Drives and Control Practical		
	Measurements and Metrology Practical	DOTE-N-SCHEME FOLLOWED
Machining Practice-I		
	Manufacturing Technology practical - II	DOTE-N-SCHEME FOLLOWED Exercises will be demonstrated using CNC turning and milling machine.

V TERM

E-SCHEME	F-SCHEME	Remarks
Design of Machine Elements	Design of Machine Elements	SIT-E-SCHEME FOLLOWED ADDED Computer Aided Design
	Thermal Engineering-II	DOTE-N-SCHEME FOLLOWED ADDED Topics on Steam condenser
Automobile Engineering		
Mechatronics		
ELECTIVE Theory 1. Renewable energy sources and energy	ELECTIVE THEORY 1.Computer Integrated Manufacturing	DOTE-N-SCHEME FOLLOWED
conservation. 2. Total Quality Management	2.Automobile Technology	ADDED EMISSION STANDARDS: Euro I, II, III and IV norms, Bharat Stage II, III, IV and VI norms.

		Deletion:
		Classifications of LC
		Engines – components
		of LC Engines and
		functions appling
		runctions cooling
		systems –air cooling –
		water cooling.
		Lubrication system –
		properties of lubricants
		-types of lubrication
		systems –Petrol and
		high pressure
		Classifications of fuels
		- merits and demerits -
		roquiromonte of a good
		lubricente
		Layout of fuel supply
		system in petrol
		engines -A.C.
		mechanical fuel pump
		 — layout of fuel supply
		system in diesel
		engine- single acting
		fuel feed pump – CAV
		fuel injection pump –
		fuel injectors – types of
		nozzles -fuel filters.
		MPEL and CRDI
		System
		lapition systems
		Ignition systems –
		battery coll ignition
		systems – magneto
		ignition system
	3.Green Energy and Energy	DOTE-N-SCHEME
	conservation	FOLLOWED
Automobile Engineering		SIT-E-SCHEME
Practical		FOLLOWED
		ADDED
		Trace the automobile
		electrical system with
		respect to (i) horn relay
		circuit (ii) Wiper circuit
		& explain with neat
		circuit diagram
	Solid Modeling Prestical	
		FULLOWED

Machining Practice-II& Machine tool testing and Maintenance practice		
	Thermal Engineering Practical	SIT-E-SCHEME FOLLOWED ADDED Valve time diagram for four stroke petrol and diesel Engine Thermal Conductivity measurement using guarded plate apparatus
Life and employability skills practical		
	ELECTIVE PRACTICAL	DOTE-N-SCHEME
	Manufacturing Practical	ADDED Universal coupling
	2.Automobile Engineering practical	SIT-E-SCHEME FOLLOWED ADDED Trace the automobile electrical system with respect to (i) horn relay circuit, (ii) Wiper circuit & explain with neat circuit diagram
	3.Green Energy and Energy Conservation practical	DOTE-N-SCHEME FOLLOWED
	Entrepreneurship & Startup	DOTE-N-SCHEME FOLLOWED

VI TERM

E-SCHEME	F-SCHEME	Remarks
Industrial Engg. And	Industrial Engineering and	SIT-E-SCHEME
Management	Management	FOLLOWED
Computer Aided Design		
and Manufacturing		
	Mechatronics	SIT-E-SCHEME
		FOLLOWED
		ADDED:Sensors for
		condition monitoring
		systems of production
		systems – Examples of
		monitoring methods:
-----------------------------	---------------------------	------------------------------
		DELETION: D.C.Motor –
		brushless permanent
		magnet D.C.Motors,
		A.C.Motors – stepper motor
		- specifications.
ELECTIVE THEORY-II	ELECTIVE THEORY	SIT-E-SCHEME
1.Welding Technology	1.Welding Technology	FOLLOWED
2.Refrigeration and Air	2.Refrigeration and Air	SIT-E-SCHEME
conditioning	conditioning	FOLLOWED
-	_	ADDED
		IAQ - principles
	3.Industrial Robotics and	DOTE-N-SCHEME
	3DPrinting	FOLLOWED
Process Automation	Process Automation	SIT-E-SCHEME
Practical	Practical	FOLLOWED
Computer Aided Design		
and Manufacturing practical		
PRACTICALS	ELECTIVE PRACTICAL	
ELECTIVE PRACTICAL-II		
1.Industrial Welding	1.Welding Technology	SIT-E-SCHEME
Practice	Practical	FOLLOWED
2. Refrigeration & Air	2.Refrigeration & Air	SIT-E-SCHEME
Conditioning Practical	Conditioning Practical	FOLLOWED
	3.Industrial Robotics and	DOTE-N-SCHEME
	3DPrinting Practical	FOLLOWED
Project work		
-		
	Project work and	DOTE-N-SCHEME
	Internship	FOLLOWED

10. HORIZONTAL AND VERTICAL ORGANISATION OF THE SUBJECTS

				Credits				
SI. No.	Course code	Subject		Basic	core	Allied/ Diversified	Value Added	
		BASIC		L				
1.	3F 3201	Strength of Materials		5				
2.	3F 3202	Fluid Mechanics and Fluid Power		5				
3.	3F 3203	Manufacturing technology -I		5				
4.	3F 3204	Strength of Materials & Fluid Mechanics Practical	111	2				
5.	3F 3205	Manufacturing Technology practical - I	111	2				
6.	3F 4206	Thermal Engineering -I	IV	5				
7.	3F 4207	Manufacturing technology -II	IV	5				
8.	3F 4208	Machine drawing and CAD Practical	IV	3				
9.	3F 4209	Manufacturing Technology practical - II	IV	2				
10.	3F 5210	Thermal Engineering - II	V	5				
11.	3F 5211	Thermal Engineering Practical		2				
		CO	RE					
12	3F 4301	Measurements and Metrology	IV		5			

Department Of Mechanical Engineering

13	3F 4302	Measurement and metrology practical	IV	2	
14	3F 5303	Design of Machine Elements	V	6	
15.	3F 5304	 ELECTIVE Theory 1. Computer Aided Design and Manufacturing 2. Automobile Engineering 3.Green Energy And Energy Conservation 	V	5	
16.	3F 5305	Solid Modeling Practical	V	2	
17.	3F 5306	ELECTIVE Practical 1.Computer Aided Design and Manufacturing Practical 2.Automobile Engineering Practical 3. Green Energy And Energy Conservation practical	V	2	
18	3F 6307	Industrial Engg. And Management	VI	6	
19	3F 6308	Mechatronics	VI	5	
20	3F 6309	ELECTIVE THEORY-II 1.Welding Technology 2.Refrigeration and Air conditioning 3.Industrial robotics and 3D printing	VI	5	
21	3F 6310	Process Automation Practical	VI	2	
22	3F 6311	ELECTIVE PRACTICAL-II 1.Welding Technology Practical 2. Refrigeration & Air Conditioning Practical 3. Industrial robotics and 3D printing practical	VI	2	

23	3F 3401	Electrical Drives and Control	IV			5		
24	3F 3402	Electrical Drives and Control Practical	IV			2		
25	3F 4403	Electric vehicle technology and policy	IV			4		
26	3F 5404	Entrepreneurship& Startup	V			3		
27	3F 6405	VI			3			
	VA	ALUE ADDED						
28	3F 0006	Universal Human Values	IV				5	
29	3F 0005	Concurrent Career Development			5			
	TOTAL (credits) 41 42							
	Total Cre	dits = First year 60 credits +	programm	ne 110	credits	17	0	

DETAILED SYLLABUS

Department Of Mechanical Engineering

Implemented from 2020 - 2021

III TERM

Department Of Mechanical Engineering

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F3201
Term	: III
Course Name	: STRENGTH OF MATERIALS

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instr	ructions	Examination				
COURSE	Week	Semester	Internal Assessment	Autonomous Examinations	Total	Duration	
Strength Of materials	05	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.				
I	Engineering Materials	15				
II	Deformation of Metals	15				
III	Geometrical Properties of Sections and Thin Shells	15				
IV	Theory of Torsion and Springs	14				
V	SF and BM Diagrams of Beams and Theory of Bending	14				
	Test & Model Exam					
	Total	80				

RATIONALE:

Day by day, engineering and technology experience tremendous growth. Design plays a major role in developing engineering and technology. Strength of material is backbone for design. The strength of material deals generally with the behaviour of objects, when they are subject to actions of forces. Evaluations derived from these basic fields provide the tools for investigation of mechanical structure.

OBJECTIVES:

- Define engineering materials, nano, composite material and mechanical testing of materials.
- Calculate the deformation of materials, which are subjected to axial load and shear.Determine the moment of Inertia of various sections used in industries.
- > Estimate the stresses induced in thin shells.
- Draw the shear force and bending moment diagram of the beam forDifferent load.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

UNIT	Course outcome	BTL
3F3201 -CO1	Ability to explain engineering materials, nano, composite materials, mechanical testing of materials and friction	U
3F3201 -CO2	Ability to understand the behavior of simple load carrying members subjected to an axial, shear and thermal Loading.	U
3F3201 -CO3	Ability to compute the centriod, moment of inertia and radius gyration of the various sections. Ability to compute the hoop stress and longitudinal stress in thin shells and spherical shells.	A
3F3201 -CO4	Ability to calculate shear stresses, angle of twist due to torsion and stiffness of spring ,coil diameter, wire diameter	A
3F3201 -CO5	Ability to construct the shear force and bending moment diagram on beams under varying load conditions and calculation of bending stress in beams.	A

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
	Engineering materials	
	Classification - definition of Mechanical properties - definition of	
	physical properties - ferrous metals - cast iron - uses -	
	advantages - types of cast iron - properties and applications -	
	effect of impurities on cast iron - steel	
	-classification - alloying elements - purpose of alloying - effect of	
	alloying elements on steel - uses of steels - properties of mild	
	steel - factors affecting physical properties of steel - defects in	
	steel - applications - properties of hard steel - market forms of	
	steels - nonferrous metals - properties and uses.	
	Nano and Composite materials	
	Introductionmicro and Nano sized particles- properties - uses	
	- applications - production of Nano layers-chemical vapour	
I	deposition method (CVD) - production of nano particles high	15
	energy ball milling. Composite materials - definition -	
	classification-properties - application - uses.	
	Mechanical testing of materials Compression test - bend test -	
	hardness test - Brinell hardness test, Vickers hardness test,	
	Rockwell hardness test - impact test - fatigue test - creep test.	
	Tensile test of mild steel in UTM - stress strain diagram - limit of	
	proportionality - elastic limit - yield stress - breaking stress -	
	ultimate stress - percentage of an elongation and percentage	
	reduction in area - problems.	
	Friction	
	Introduction - definition - force of friction - limiting friction - static	
	friction - dynamic friction - angle of friction - coefficient of friction	
	- laws of static and dynamic friction.	
II	DEFORMATION OF METALS	15

Simple stresses and strains

Definition - load, stress and strain - classification of force systems - tensile, compressive and shear force systems -Hooke's law - definition Young's modulus - working stress, factor of safety, load factor, shear stress and shear strain - modulus of rigidity. Linear strain - deformation due to tension and compressive force - simple problems in tension, compression and shear force.

Elastic constants

Definition - lateral strain - poisons ratio - volumetric strain - bulk modulus- volumetric strain of rectangular and circular bars problems connecting linear, lateral and volumetric deformation elastic constants and their relationship - problems on elastic constants. Composite bar - definition - problems in composite bars subjected to tension and compression. Temperature stresses and strains - simple problems.

Strain Energy

Definition – proof resilience – modulus of resilience – the expression for strain energy stored in a bar due to axial load – instantaneous stresses due to gradual, sudden, impact and shock loads – problems computing instantaneous stress and deformation in gradual, sudden, impact and shock loadings.

GEOMETRICAL PROPERTIES OF SECTIONS AND THIN SHELLS

Properties of sections

Ш

Definition – center of gravity and centroid - position of centroids of plane geometrical figures such as rectangle, triangle, circle and trapezium- problems to determine the centroid of angle, channel, T and I sections only – Definition - centroidal axis - Axis of symmetry. Moment of Inertia – Statement of parallel axis theorem and perpendicular axis theorem. Moment of Inertia of lamina of rectangle, circle, triangle, I and channel sections –

15

	Definition - Polar moment of Inertia - radius of gyration -	
	Problems computing moment of inertia and radius of gyration for	
	angle, T, Channel and I sections.	
	Thin Shells	
	Definition - Thin and thick cylindrical shell - Failure of thin	
	cylindrical shell subjected to internal pressure - Derivation of	
	Hoop and longitudinal stress causes in a thin cylindrical shell	
	subjected to internal pressure - simple problems - change in	
	dimensions of a thin cylindrical shell subjected to internal	
	pressure - problems - Derivation of tensile stress induced in a	
	thin spherical shell subjected to internal pressure - simple	
	problems - change in diameter and volume of a thin spherical	
	shell due to internal pressure – problems.	
	THEORY OF TORSION AND SPRINGS	
	Theory of Torsion	
	Assumptions – torsion equation - Strength of solid and hollow	
	shafts - power transmitted - Definition - Polar modulus -	
	Torsional rigidity – strength and stiffness of shafts – comparison	
	of hollow and solid shafts in weight and strength considerations	
1\7	 Advantages of hollow shafts over solid shafts – Problems. 	11
IV	Springs	14
	Types of springs – Laminated and coiled springs and	
	applications - Types of coiled springs - Difference between	
	open and closely coiled helical springs - closely coiled helical	
	spring subjected to an axial load – problems to determine shear	
	stress, deflection, stiffness and resilience of closed coiled helical	
	springs.	
	SF AND BM DIAGRAMS OF BEAMS AND THEORY OF	
	BENDING	
V	SF and BM diagrams	14
	Classification of beams – Definition – shear force and Bending	
	moment – sign conventions for shear force and bending moment	

 types of loadings – Relationship between load, force and bending moment at a section – shear force diagram and bending moment diagram of cantilever and simply supported beam subjected to point load and uniformly distributed load (udl)
 Determination of Maximum bending moment in cantilever beam and simply supported beam when they are subjected to point load and uniformly distributed load.
 Theory of bending
 Theory of simple bending – Assumptions – Neutral axis – bending stress distribution – moment of resistance – bending equation – M/I=f/y=E/R – Definition – section modulus rectangular and circular sections – strength of beam – simple problems involving flexural formula for cantilever and simple supported beam.

Reference Books

- 1. Strength of Materials, R. S. Khurmi, S.Chand & Co., 2021 Ram Nagar, New Delhi.
- 2. Strength of Materials, S. Ramamrutham, 2017, DhanpatRai Pub.

Co., New Delhi.

- Strength of Materials, R.K. Bansal, Laxmi Publications Pvt. Ltd., New Delhi, 2018.
- 4. Strength of materials, S.S.Rattan, Tata Mcgraw hill, New Delhi, 2008, ISBN 9780070668959,
- 5. Strength of Materials, B K Sarkar, 2015, Tata Mcgraw hill, New Delhi.
- Engineering mechanics, R.K. Bansal, Laxmi Publications Pvt. Ltd., New Delhi, ,2018.

Programme : DIPLOMA IN MECHANICAL ENGINEERING

Department Of Mechanical Engineering

Implemented from 2020 - 2021

Course Code	:	3F 3202
Term	:	III
Course Name	:	FLUID MECHANICS AND FLUID POWER

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Exa			
COURSE	Hours	Hours /		Marks		
	/M/ook	Somostor	Internal	Autonomous	Total	Duration
	/ VV CCK	Semester	Assessment	Examinations	rotar	
Fluid						
Mechanics	5	80	25	100*	100	3 Hrs.
And						
Fluid						
Power						

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
Ι	Basic Principles of Fluid Mechanics & flow of fluids	18
II	Pipe flow, impact of jets and hydraulic turbines	16
	Reciprocating pumps & centrifugal pumps	13
IV	Pneumatic Systems	13
V	Hydraulic systems	13
Test & Model Exam		7
	Total	80

RATIONALE:

Mechanical engineering diploma holders are required to deal with problem of fluid flow and use of hydraulic and pneumatic circuits. Hence knowledge and skills about fluid flow and hydraulic and pneumatic circuits are required to be imparted for enabling them to perform above function. This course aims at development of knowledge and skills about various properties of fluids, fluid power machines and hydraulic and pneumatic systems.

OBJECTIVES:

- Making the students to resolve hydraulic related problems at the current scenario.
- Define the properties of Fluids.
- > Explain the working of pressure measuring devices.
- > Explain continuity equation and Bernoulli's Theorem.
- > Assess the impact of frictional loss of head in flow through pipes.
- > Estimate the discharge through orifices.
- > Distinguish the working principles of pumps and turbines.
- > Explain the working of centrifugal pumps and reciprocating pumps.
- > Draw Pneumatic circuits for industrial application.
- > State the properties of hydraulic Systems.
- > Develop hydraulic circuit for machine tools applications.

Course Outcome

On successful completion of the course, the students will be able to attain

below Course Outcome (CO):

Course outcome		
3F 3202 -CO1	Ability to understand the properties of fluids, pressure measuring devices, types of fluids and flows, bernoulli's theorem and their applications	U
3F3202 -CO2	Ability to calculate the major and minor losses of head in flow through pipes and working principles of turbines	Α
3F3202 -CO3	Ability to identify parts and performance of centrifugal and reciprocating pumps	Α
3F3202 -CO4	Ability to describe the pneumatic system and their application circuits	R
3F3202 -CO5	Ability to describe the hydraulic system and their application circuits	R

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-

Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Basic Principles of Fluid Mechanics	
	Fluids – Definition – Properties – Density – Specific weight	
	- specific volume - Relative density - Viscosity - Vapour	
	pressure - compressibility - Surface tension - Capillarity -	
	Ideal and Real fluids – Newtonian and Non-Newtonian fluids	
	 pressure – Atmospheric pressure – Absolute pressure – 	
	Gauge pressure and vacuum pressure – Pressure head -	18
	Pressure measurement – Bourdons tube pressure gauge	
	Flow of fluids	
	Types of flow – Laminar flow – Turbulent flow – Steady flow –	
	Unsteady flow - Uniform flow - non-Uniform flow - mean	
	velocity – Continuity equation – Bernoulli's equation – Proof –	
	Applications - Venturi meter - Orifice meter - Pitot tube -	
	Rotameter - Problems. Pressure sensor technologies-	
	classification only. Total Pressure, Centre of pressure on	
	immersed bodies (flat vertical)- Problems	
II	Pipe Flow	
	Froude's experiment – Wetted perimeter – Wetted area –	
	Hydraulic radius - Head loss due to friction - Darcy-	
	Weishbach equation - Minor losses (No derivation) -	
	problems.	
	Impact of Jets	16
	Impact of jet on fixed and series of moving flat vanes - Work	
	done and efficiency – Simple problems on the above.	
	Hydraulic turbines	
	Layout of a Hydro-electric power plant - Classification of	
	turbines - Working of Pelton wheel, Francis turbine and	
	Kaplan turbine - Differences between impulse and reaction	
	turbinesSurge tanksDraft tubes-Types.	

III	Centrifugal Pump	
	Components and working of a single stage centrifugal pump –	
	Types of casing - types of impellers - Multi stage pumps -	
	Priming – Self priming pump – Constant speed Characteristic	
	curves – Jet pump – Trouble shooting, causes and remedies –	
	Comparison of centrifugal pump and reciprocating pumps -	
	No problems.	
	Reciprocating pump	13
	Reciprocating pump – Classification – Single acting – Double	
	acting Reciprocating pumps - Plunger and piston pump -	
	differences - Discharge of reciprocating pump - Theoretical	
	power required – Coefficient of discharge – Slip – Percentage	
	slip - Negative slip -Cavitation - Air vessels - Trouble	
	shooting, causes and remedies-Problems on discharge, slip,	
	percentage slip and theoretical power required.	
IV	Components of Pneumatic system	
	Pneumatic Systems – elements – filter – regulator - lubricator	
	unit - pressure control valves - pressure relief valves -	
	pressure regulating valves - directional control valves - 3/2	
	DCV - 5/2 DCV - 5/3 DCV flow control valves - throttle valves	
	-shuttle valves - quick exhaust valves - ISO symbols for	
	pneumatic components – pneumatic circuits – direct control of	
	single acting cylinder - operation of double acting cylinder -	13
	merits and demerits of pneumatic system - applications.	
	Pneumatic circuits	
	operation of double acting cylinder with metering-in control	
	circuit - operation of double acting cylinder with metering-out	
	control circuit – use of shuttle valve in pneumatic circuits – use	
	of quick exhaust valve in pneumatic circuits - automatic	
	operation of double acting cylinder single and - multiple cycle	
	circuits	
V	Components of Hydraulic systems	

Hydraulic system - Merits and demerits - Service properties of hydraulic fluids Hydraulic accumulators – Weight of gravity type accumulator - Spring loaded type accumulator - Gas filled accumulator – Pressure intensifier – Fluid power pumps - External and internal gear pump, Vane pump, Radial piston pump – ISO symbols for hydraulic components – Hydraulic actuators – Cylinders and motors – Valves – Pressure control 13 valves. Flow control valves and direction control valves types – including 4/2 DCV and 4/3 DCV – their location in the circuit. Hydraulic operation of double acting cylinder with metering-in and metering-out control - application of hydraulic circuits - Hydraulic circuit for - shaping machine - table movement in surface grinding machine and milling machine -Motion synchronization circuit. comparison of hydraulic and pneumatic systems.

Reference Books

- "Dr.R.K.Bansal" "Fluid Mechanics and Machines", Laxmi publications, 2018, New Delhi.
- "P.N.Modi and S.N.Seth" "Hydraulic & Fluid Mechanics" Standard Book House,New Delhi.
- 3. Hydraulic Systems Hand Book "Utility Publications Limited, Secunderabad"
- 4. "John Pippenger &Tyler Hicks" "Industrial Hydraulics" Mc Graw Hill International Book Company
- Audel's Practical Guide to Fluid power "D.B.Tara pare vale Sons & Co., Pvt Ltd., Bombay".

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course	: 3F 3203
Term	: 111
Course Name	: MANUFACTURING TECHNOLOGY-I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instr	uctions	Examination			
COURSE	JRSE Hours / Week	Hours /	Marks			
COURSE		Semester	Internal Assessment	Autonomous Examinations	Total	Duration
Manufacturing technology-l	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Casting Processes	15
II	Joining Processes	15
	Bulk Deformation Processes and Heat Treatment	15
IV	Manufacturing of Plastic Components and Powder	15
	Metallurgy	
V	Centre Lathe And Special Purpose Lathe	13
Test & Model Exam		7
	Total	80

RATIONALE:

Manufacturing, the major and the most important aspect in industries needs utmost care and attention. Knowledge about various processes and allied areas will be of great use to the personnel involved in production. This will provide the students an opportunity to skill themselves for the industrial scenario.

OBJECTIVES:

- Acquire Knowledge about types of pattern, casting, and moulding.
- Describe the various casting processes.
- Knowledge about various welding process and its working principle.
- Appreciate the safety practices used in welding.
- Acquire knowledge about various forming technologies.
- Describe the functioning of semi-automatic lathes.
- Knowledge about the lathe and its working parts.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

UNIT	Course outcome	BTL
3F3203 -CO1	Ability to explain the various methods of manufacturing the components by Foundry practice	R
3F3203 -CO2	Ability to explain various welding process and its working principle and different types of welding joints and testing of welded joints.	U
3F3203 -CO3	Ability to distinguish Hot working, Cold working processes and understand the press tools and accessories, Types of presses and its different types of press working.	U
3F3203 -CO4	Ability to understand the different Types and their uses of Engineering plastics and manufacturing of different types of plastics and composites.	R
3F3203 -CO5	Ability to describe automatic lathe semiautomatic lathe work holding devices and tool holding devices and machining operations.	R

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	CASTING PROCESSES	15
	Patterns	
	Definition – pattern materials – factors for selecting	
	pattern materials – Types of Pattern - solid piece, split	
	patterns, loose piece, match plate, sweep, skeleton,	
	segmental, shell – pattern allowances – core prints.	
	Moulding	
	Definition – moulding boxes, moulding sand –	
	ingredients - silica - clay -moisture and miscellaneous	
	materials - properties of moulding sand - sand additives	
	 moulding sand preparation - moulding tools - mixing - 	
	tempering and conditioning – types of moulding – green	
	sand – dry sand -machine moulding –Top and bottom	
	squeezer machines – Jolting machines – sand slinger-	
	core – CO ₂ core making – types of core – coreboxes.	
	Casting	
	Definition – sand casting using green sand and dry	
	sand – gravity die casting – pressure die casting – hot	
	and cold chamber processes – centrifugal casting –	
	continuous casting – chilled casting – malleable casting	
	 melting of cast iron – cupola furnace – melting of 	
	nonferrous metals - crucible furnace melting of steel -	
	arc furnaces – induction furnaces – instrument for	
	measuring temperature – optical pyrometer – thermo	
	electric pyrometer – cleaning of casting – tumbling,	
	trimming, sand and shot blasting – defects in casting –	
	causesand remedies –safety practices in foundry.	
II	JOINING PROCESSES	15
	Arc Welding	

		1
	Definition – arc welding equipment – arc welding methods –	
	carbonarc, metal arc, Metal Inert gas (MIG), Tungsten inert	
	gas (TIG), Atomic hydrogen, Friction Welding- Induction	
	welding - working principle - applications - advantages and	
	disadvantages. Plasma arc, Submerged arc and Electro slag	
	welding.	
	Gas welding	
	Definition Gas Welding Equipment- Oxy and acetylene	
	welding - Three types of flame- resistance welding -	
	classification of resistance welding- butt - spot - seam -	
	projection welding - welding related processes - oxy and	
	acetylene cutting – arc cutting – hard facing bronze welding –	
	soldering and brazing special welding processes - cast iron	
	welding – thermit welding – solid slate welding, ultrasonic,	
	diffusion and explosive welding - explosive cladding -	
	modern welding, electron beam and laser beam welding -	
	types of welded joints – merits and demerits of welded joints	
	- inspection and testing of welded joints - destructive and	
	nondestructive types of tests – magnetic particle test –	
	radiographic and ultrasonic test defects in welding - causes	
	and remedies – safety practices in welding.	
III	BULK DEFORMATION PROCESSES AND	15
	HEATTREATMENT	
	Forming Hot working, cold working – advantages of hot working and	
	cold working- hot working operations - rolling, forging, smith	
	forging, drop forging, upset forging, press forging – roll	
	forging Press working : Types of presses – Mechanical and	
	Hydraulic presses – press tool and accessories – press	
	working operations – bending operations – angle bending –	
	chemical bending – curling – drawing – shearing operations	
	 blanking, piercing, trimming – notching – lancing. 	

	Heat treatment	
	Heat treatment processes - purpose - procedures -	
	applications of various heat treatment processes - Iron -	
	carbon equilibrium diagram full annealing – process annealing	
	stress relief annealing - spherodising annealing - isothermal	
	annealing – normalizing – hardening – temperingquenching	
	medium - different types and their relative merits - case	
	hardening – pack carburizing – cyaniding – nitriding –	
	inductionhardening and flame hardening.	
IV	MANUFACTURING OF PLASTIC COMPONENTS AND	15
	POWDERMETALLURGY	
	Plastic Components	
	Types of plastics-Engineering plastics – thermosets –	
	composite - structural foam, elastomers - polymer alloys and	
	liquid crystal polymers.	
	Factors Influencing The Selection Of Plastics Mechanical	
	properties- degradation-wear resistance -frictional	
	properties- special properties-processing – cost.	
	Processing of Plastics	
	Extrusion-general features of single screw extrusion - twin	
	screw extruders and types-Injection moulding types : Plunger	
	type Reciprocating screw injection - details of injection mould	
	- structural foam injection mould - sandwich moulding - gas	
	injection moulding – injection moulding of thermosetting	
	materials calendaring and rotational moulding. Design	
	consideration for plastic components.	
	Powder Metallurgy	
	Methods of manufacturing metal powders -	
	atomization, reduction and electrolysis deposition -	
	compacting - sintering- sizing - infiltration -	
	mechanical properties of parts made by powder	
	metallurgy – design rules for the power metallurgy	

	process.	
V	CENTRE LATHE AND SPECIAL PURPOSE LATHES	13
	Centre Lathe	
	Theory of lathes - specifications - simple sketches -	
	principle parts -head stock - back geared type - all	
	geared type – tumbler gear mechanism – quick change	
	gear box – apron mechanism – carriage cross slide –	
	automatic, longitudinal and cross feed mechanism - tail	
	stock and its functions - work holding device - face	
	plate – three jaw chuck – four jaw chuck – catch plate	
	and carrier – types of center's – machining operations	
	done on lathe - straight turning – step turning-taper	
	turning-knurling-Thread cutting - Facing – Boring -	
	chamfering –cutting speed – feed-depth of cut.	
	Semi-Automatic Lathes	
	Types of semi-automatic lathes - capstan and turret	
	lathes – difference between turret and capstan – tools	
	and work holding devices – self- opening die head –	
	collapsible taps.	
	Automatic Lathes Automatic lathe – classification of single spindle	
	automatic lathe- principle of automatic lathes -	
	automatic screw cutting machines - multi spindle	
	automatic lathes.	

Reference Books:

- Elements of workshop Technology Volume I & II Hajra Chowdry & Bhattacharaya 2013 - Media Promoters & Publishers Pvt. Ltd., Seewai Building `B', 20-G,Noshir Bharucha Marg, Mumbai 400 007.
- Introduction of basic manufacturing processes and workshop technology Rajendersingh – New age International (P) Ltd. Publishers, 2010, 4835/24,

Ansari Road, Daryaganj, New Delhi – 110002.

- Manufacturing process Begeman 5th Edition -McGraw Hill, New Delhi 1981.
- Workshop Technology- WAJ Chapman Volume I, II, & III Vima Books Pvt. Ltd.,4262/3, Ansari Road, Daryaganj, New Delhi 110 002.
- 5. Workshop Technology Raghuwanshi Khanna Publishers. Jain & Gupta,2015
- Production Technology, Edn. XII, Khanna Publishers, 2-B, North Market, NAI Sarak, NewDelhi 110 006 – 2006
- Production Technology P. C. SHARMA S.Chand & Co. Ltd., Ram Nagar, New Delhi 110 055 – 2014
- Production Technology HMT Edn. 18 published by Tata McGraw Hill publishing Co. Ltd., 7 West Patel nagar, New Delhi 110 008.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course code	: 3F 3401
Term	: 111
Course Name	: ELECTRICAL DRIVES & CONTROL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per term: 16 weeks						16 weeks
	Instructions		Examination			
			Marks			
COURSE	Hours / Week	Semester	Internal Assessment	Autonomous Examinations	Total	Duration
Electrical						
Drives & Control	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks

TOPICS AND ALLOCATION OF HOURS

Unit no	Торіс	Hours
I	DC circuits and DC machines	15
II	AC circuits and AC machines	15
	Stepper and servo motors & drives	14
IV	Power supplies and logic gates	14
V	Control elements	15
	Cycle tests and model examination	07
	Total	80

RATIONALE

Automation is being the order of the day to improve the production with high quality consciousness. It involves electrically operated switches, sensors controlled through electrically driven motors actuators. The subject aims in introducing the basic electrical DC and AC circuits and motors and also focuses on the various special control devices like stepper, servo drives and its controlling elements.

OBJECTIVES

- > Explore fundamental electric circuit laws.
- Explain the working principle of DC and AC electrical machines. Identify the effective uses of the drives of electrical machines.
- Analyze the various power supply circuits.Select the field controlled elements.
- Explain the construction and working of transformer.Compare the different types of logic gates.
- > Appreciate the safety practices followed in electrical systems.
- Compare the use of servo motors and stepper motors in electrical driving system.

Course outcome

On successful completion of the course, the students will be able to attain below course outcome (co):

	Course outcome	BTL
3F 3401-1	Ability to Explain the fundamental concepts of DC Circuits& DC Machine	R
3F 3401-2	Ability to summarize the fundamental concepts of AC Circuits& AC Machine	R
3F 3401-3	Ability to describe the construction and working of Stepper motor, Servo motor& industrial drives	R
3F 3401-4	Ability to paraphrase the fundamental concept of Electronic devices	R
3F 3401-5	Ability to interpret the construction and working of circuit breakers & Microcontroller	R

Legends: U= understand; A= apply and above levels (BTL-bloom's revised taxonomy level)

Detailed syllabus

UNITS	NAME OF THE TOPIC	HOURS
I	DC CIRCUITS AND DC MACHINES	
	Definitions - Electric current, voltage and resistance -	
	Ohm's Law and Kirchhoff's Laws - Resistance in series and	

	parallel and series, parallel - Simple problems -	
	Electromagnetism (Definitions only), Magnetic flux, Flux	
	density, Magnetic field Intensity, MMF, permeability,	15
	reluctance, Faraday's laws of electromagnetic Induction,	
	electrical and mechanical units.	
	DC generators – Construction, principle of operation,	
	types and applications.	
	DC motors – Construction, principle of operation, types	
	and applications. Necessity of starter- Three point, four point	
	starters.	
	Necessity of starter: three point, four point starters.	
II	AC CIRCUITS AND AC MACHINES	
	Fundamentals of AC voltage and current - Peak,	
	average, RMS value of sine wave, Frequency, time period,	
	amplitude, power & power factor (Definition only) - 3Φ	4 5
	circuits: Star and Delta Connections - relationship between	15
	phase and line voltage in Star and phase and line current in	
	Delta connections.	
	Transformers: Principle of operation and construction	
	 Types - EMF equation(no definition) – losses in transformer – 	
	efficiency – applications- Auto Transformer(Principle Only).	
	Alternator : Construction – principle of operation – types and applications.	
	AC machines: AC motors - principle of operation of	
	single phase capacitor start induction motor only -	
	applications - Three phase induction motors - Squirrel cage	
	and Slip ring induction motors (Construction and working	
	principle only) – applications – speed control of 3Φ induction	
	motor –Necessity of starters – DOL and star delta starter.	
III	STEPPER AND SERVO MOTORS & DRIVES:	14
	• PMDC, Stepper motor – construction, working	
	principle, Types-Permanent magnet stepper, Hybrid	

 synchronous stepper, Variable reluctance stepper - Applications . servo motor – types: brushless servo motor, permanent magnet servo motor - construction and applications. Industrial drives – Types: group drive, individual drive, multi motor drive - block diagram of variable frequency drive, stepper motor drive; single stepping and half stepping. Servo drives. 	
aid, precautions – causes of accident and their preventive	
measures. Energy conservation: Energy conservation measures in Homes & Industries.	
POWER SUPPLIES AND LOGIC GATES	14
 Diode –forward biasing and reverse biasing – use of diode in rectifiers – half wave, full wave & Bridge rectifiers – necessity of filters – Regulated power supplies: IC voltage regulators – SMPS, UPS and inverters – General description and their applications. Display devices – LED, 7 segment LED, LCD. Logic gates: Positive and negative logic, definition, symbol, truth table, Boolean expression for OR, AND, NOT,NOR,NAND,EXOR and EXNOR gates – Universal logic gates: NAND and NOR 	
CONTROL ELEMENTS Fuses – selection of fuse – necessity of fuse – fuse switch units. Switches: Push button switch, selector switch, limit switch, pressure switch, Temperature switch, Float switch and reed switch. Relays – NO,NC – usage – bimetallic thermal overload relays Contactors – Usage – Necessity of contactor – Solenoid type contactor Circuit Breakers – Miniature case circuit breaker (MCCB) and	15
	 synchronous stepper, Variable reluctance stepper - Applications . servo motor – types: brushless servo motor, permanent magnet servo motor - construction and applications. Industrial drives – Types: group drive, individual drive, multi motor drive - block diagram of variable frequency drive, stepper motor drive; single stepping and half stepping. Servo drives. Electrical Safety: Importance of earthing - electric shock: first aid, precautions – causes of accident and their preventive measures. Energy conservation: Energy conservation measures in Homes & Industries. POWER SUPPLIES AND LOGIC GATES Diode –forward biasing and reverse biasing – use of diode in rectifiers – half wave, full wave & Bridge rectifiers – necessity of filters – Regulated power supplies: IC voltage regulators – SMPS, UPS and inverters – General description and their applications. Display devices – LED, 7 segment LED, LCD. Logic gates: Positive and negative logic, definition, symbol, truth table, Boolean expression for OR, AND, NOT,NOR,NAND,EXOR and EXNOR gates – Universal logic gates: NAND and NOR CONTROL ELEMENTS Fuses – selection of fuse – necessity of fuse – fuse switch units. Switches: Push button switch, selector switch, limit switch, pressure switch, Temperature switch, Float switch and reed switch. Relays – NO,NC – usage – bimetallic thermal overload relays Contactors – Usage – Necessity of contactor – Solenoid type contactor Circuit Breakers – Miniature case circuit breaker (MCCB) and

Miniature circuit breaker(MCB), Oil Circuit breakers(OCB),
Earth leakage circuit breakers(ELCB).
Microcontroller: Definition - Architecture of 8051 : Block
diagram of Microcontroller –Functions of each block. Pin
details of 8051-Application.

Reference books						
Sl.no.	Name of the book	Author	Publisher			
1	A Text book of Electrical Technology volume-I MCE-23- 2015	B.L.Theraja	S.Chand & CoNew Delhi			
2	Electrical machines A course of Electrical Engg 4th Edition 2014.	K.Bhattachaya , Principal,TTT I, Chandigar	Tata -Mc Graw Hill ,New Delhi			
3	Electronic devices applications and integrated circuits5th Edition,2010	Mathur Kulshreshtha Chadha	Umesh publications, New Delhi -6			
4	Measurement and Instrumentation	ARUN.K	PHI 2010			

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 3204
Term	: 111
Course Name	: STRENGTH OF MATERIALS AND FLUID
	MECHANICS PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
COURSE	Hours	Hours /	Ν	/larks		
	/	Semeste	Internal	Autonomous	Total	Duration
	Week	r	Assessment	Examinations	TOLA	
Strength						
of	5	80	25	100*	100	3 Hrs.
Materials						
and						
Fluid						
Mechanics						
Practical						

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks

RATIONALE:

Diploma holders in this course are required to experience the mechanical properties of materials, fluid flow, fluid machines and hydraulic and pneumatic systems. The knowledge thus acquired helps them in understanding the behavior of materials when stressed, and the functioning of fluid power machines, hydraulic and pneumatic systems

OBJECTIVES:

- > Determine stress strain relations for steel and cast iron.
- > Determine hardness of materials.

- > Perform torsion, bending, impact and shear tests
- > Determine coefficient of discharge of venture meter and orifice meter.
- > Determine the co efficient of friction in pipes.
- > Verify Bernoulli's theorem.
- > Conduct performance test on centrifugal and reciprocating pump.
- > Conduct performance test on impulse and reaction turbine.
- > Design and make fluid power circuits.

Course Outcomes:

CO	Details	BTL
3F3204 -CO1	Ability to compute stress strain for steel by tension test and measurement of hardness of materials by hardness test	Α
3F3204 -CO2	Ability to analyse the behaviour of the materials by performing torsion, bending, impact and shear tests	Α
3F3204 -CO3	Ability to calculate coefficient of discharge of venturi meter and orifice meter and the friction factor in pipes.	Α
3F3204 -CO4	Ability to analyse the Bernoulli's theorem.	Α
3F3204 -CO5	Ability to analyse the performance of centrifugal and reciprocating pump impulse and reaction turbine.	Α

DETAILED SYLLABUS

Contents: Practical

Exercise

1. STRENGTH OF MATERIALS LABORATORY

1. Test on ductile materials: Finding Young's modulus of elasticity, yield points, percentage elongation and percentage reduction in area, Tests on mild steel

2. Hardness test:

Determination of Rock well's Hardness number for various materials like mild steel, high carbon steel, brass and copper.

3. Torsion test: Torsion test on mild steel – relation between torque and angle of twist – Determination of shear modulus -- determination of elastic constants for mild steel.

Department Of Mechanical Engineering

4. Bending and deflection tests: Determination of Young's modulus for steel by deflection test.

5. Impact test:

Finding the resistance of materials to impact loads by (a) Izod test (b) Charpy test.

6. Tests on springs of circular section:

Determination of modulus of rigidity, strain energy, shear stress by load deflection method – compression and tension test (closed coil spring only).

7. Shear test:

Determination of shear strength of a given metal (M.S)

2. FLUID MECHANICS LABORATORY

- 1. Verification of Bernoulli's Theorem.
- 2. Determination of Co-efficient of discharge of the Venturimeter.
- 3.Determination of Co-efficient of discharge of the Orifice meter.
- 4. Determination of Co-efficient of friction in the pipes.
- 5. Performance test on given reciprocating pump.
- 6. Performance test on given centrifugal pump
- 7. Performance test on Pelton wheel.
- 8. Performance test on Francis Turbine.
- 9. Performance test on Kaplan Turbine.
- 10. Study of Pneumatic and Hydraulic circuits [Demo experiments]
 - Direct operation of single and double acting cylinder.
 - Operation of double acting cylinder with quick exhaust valve.
 - Speed control of double acting cylinder using metering-in and metering-out circuits.
 - Automatic operation of double acting cylinder in single cycle using limit switch.
 - Automatic operation of double acting cylinder in multi cycle using limit switch.

AUTONOMOUS EXAMINATION

Note:

· Students will be asked to take one set of questions by a lot or

question paper issued by autonomous cell

- Each set of questions will have either two experiments from strength of materials practical or one main question and one question from demo experiments of Fluid mechanics laboratory
- · All the experiments should be given in the question paper
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batch strength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's / equipment before commencement of practical examination.

DETAILED ALLOCATION OF MARKS

PART - A	•	45marks
Procedure / Observation	10	
Tabulation / Calculations	25	
Result / Graph	10	
PART - B	•	45 marks
Procedure / Observation	10	
Tabulation / Calculations	25	
Result / Graph	10	
Viva-voce	•	10 marks
Total	•	100 Marks

Strength of Materials laboratory:

Fluid Mechanics laboratory:

Part-A	:	60 marks

Procedure / Observation	15	
Tabulation / Calculations	35	
Result / Graph	10	
Part - B		30 marks
Circuit diagram	10	
Pneumatic diagram	10	
Description	10	
Viva-voce	•	10 marks
Total	•	100 Marks
		1

LIST OF EQUIPMENTS

1.	UTM.	01
2.	Rockwell's Hardness Testing Machine.	01
3.	Torsion testing machine.	01
4.	Impact testing machine.	01
5.	Deflection testing arrangement	01
6.	Spring testing arrangements.	01
7.	Shear testing machine.	01
8.	Vernier calliper.	02
9.	The Bernoulli's Apparatus.	01
9.7	An arrangement to find friction factor of pipe.	01
10	. A reciprocating pump with an arrangement for collecting data	to
	find out the efficiency and plot the characteristics curves	01
11	A centrifugal pump with an arrangement for collecting	
	data to find out the efficiency and plot the characteristics	
	curves.	01
12	A impulse turbine (pelton turbine) with an arrangement for	
	calculating data to find out the efficiency.	01
13	A reaction turbine (Francis turbine) with an	
	arrangement for calculating data to find out the efficiency.	01
14	A reaction turbine (Kaplan turbine) with an arrangement for	

Department Of Mechanical Engineering	Implemented from 2020 - 2021		
calculating data to find out the efficiency.	01		
15 components for hydraulic and pneumatic circ	cuits 01		

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 3402
Term	: 111
Course Name	: ELECTRICAL DRIVES AND CONTROL
	PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

. . .

No of weeks per term: 16 w						16 weeks
	Instructions		Examination			
COURSE	Hours	Hours /	Marks			
	/W eek	Semester	Internal	Autonomous		Duration
			Assessment	Examinations	Iotal	
Electrical						
Electrical	4	64	25	100*	100	3 Hrs
drives	4		20	100	100	0 1113.
and						
control						
Practical						

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

In this course the students will verify the principles behind the construction of various electrical & electronics equipments and circuits and also learn the performances of transformer, DC and AC motors, Stepper and Servo motor drivers, rectifiers and verify the truth table for various types of gates.

OBJECTIVES:

- Identify starters for different motors.
- > Test the characteristics of DC and AC machines
- Identify and select controlling elements
- > Explore the performance of ELCB, MCB.
- > Design regulated power supplies.
- Identify display devices LED, 7 segment LED, LCD.
- > Identify the drive circuit for special motors.
- > Test the speed control circuit of the special motors.

Course Outcomes:

	Course Outcome	BTL
3F3402.1	Able to Analyze Ohm's Law.	A
3F34022	Able to Compare the characteristics and applications different types of DC Motors	U
3F3402.3	Able to analyze the characteristics of PN junction diode, Half wave, Fullwave & Bridge rectifier	A
3F34024	Able to analyze the characteristics of regulator, logic gates & stepper and servo motors	A
3F3402.5	Able to Estimate the efficiency and regulation of the single phase transformer.	U

DETAILED SYLLABUS

- 1. Verification of Ohm's law.
- 2. Load test on DC shunt motor.
- 3. Load test on single phase transformer.
- 4. OC & SC tests on single phase transformer.
- 5. Measurement of Earth Resistance using Megger.
- 6. Study of DC motor Starters 3 Point & 4 Point Starters.
- 7. Study of AC motor starters DOL & star Delta starters.
- 8. Study of relays, contactors, push buttons and limit switch.
- 9. Speed Control of DC shunt motor by Armature control & Field control.
- 10. Study of single phase induction motor.
- 11. V-I characteristics of semiconductor diode.
- 12. Construction and testing of Half wave rectifier.
- 13. Construction and testing of full wave rectifier.
- 14. Construction and testing of bridge rectifier.

- 15. Construction and testing of IC voltage regulator using IC 7805
- 16. Verification of truth tables for logic gates.
- 17. Verification of universal gates.
- 18. Study of stepper motor.
- 19. Study LED & 7 segment LED
- 20. Study of Servo motor.

SCHEME OF EVALUATION

SLNO	Description	Maximum Marks
1	Circuit diagram	30
2	Connection	30
3	Execution	25
4	Output / Result	10
5	Viva Voce	05
	Total	100

Note: Only one question will have to be answered by the students in the examination BY LOT out of the total 15 Questions.

ELECTRONICS EXPERINEMNTS

- **1.** Construct and determine the VI characteristics of PN junction diode under forward bias condition.
- 2. Construct the Bridge rectifier circuits using diodes and measure the ripple factor
- **3.** Construct the Full wave rectifier circuits using diodes and measure the ripple factor
- **4.** Construct the Half wave rectifier circuits using diodes and measure the ripple factor
- 5. Verify the truth table of basic gates and using 74xx ic's.
- 6. Verify the truth table of basic universal gates and using 74xx ic's.
- 7. Construction and testing of IC voltage regulator using IC 7805
- 8. Conduct and test the stepper motor.

9. Conduct and test the servo motor.

ELECTRICAL EXPERIMENTS

- **10.** To determine the unknown resistance value by using ohm's law
- 11. Conduct load test on 1phase transformer
- **12.** Conduct load test on 3phase squirrel cage induction motor and also calculate efficiency.
- **13.** Conduct load test on DC shunt motor.
- **14.** Conduct Speed Control of DC shunt motor by Armature control & Field control
- **15.** Conduct a suitable experimement of OC & SC tests on single phase transformer.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	:3F 3205
Term	: 111
Course Name	: Manufacturing Technology - I Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

COURSE	Instructions		Examination			
	Hours	Hours /		Marks		Duration
Manufacturing Technology - I Practical	/ Week	Semester	Internal Assessment	Autonomous Examinations	Total	Duration
	4	64	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marksfor result.

RATIONALE:

Manufacturing, the major and the most important aspect in industries needs utmost care and attention. Knowledge about various processes and allied areas will be of great use to the personnel involved in production. This will provide the students an opportunity to skill themselves for the industrial scenario.

OBJECTIVES:

- > Identify the parts of a center lathe
- > Identify the work holding devices
- > Set the tools for various operations
- > Operate the lathe and Machine a component using lathe
- > Identify the tools used in foundry.
- > Identify the tools and equipments used in welding
- > Prepare sand moulds for different patterns.
- > Perform welding operation to make different types of joints.
- > Identify the different welding defects.

> Appropriate the safety practices used in welding

Course Outcomes:

CO	Details	BTL
3F3205 -CO1	Ability to List the different safety precaution in lathe and Identify the parts of a centre lathe.	R
3F3205 -CO2	Ability to Understand the basics of metal cutting and working of different types of machine tools.	R
3F3205 -CO3	Ability to Create sand mould by using the different types of pattern.	С
3F3205 -CO4	Ability to Identify the tools used and safety precautions in welding.	Α
3F3205 -CO5	Ability to Apply the knowledge to make different types of joints by arc and gas welding.	Α

DETAILED SYLLABUS

Lathe: Study of Lathe parts and its fuctions – Operations - Plain Turning , Step Turning, Taper turning, Knurling, Thread cutting, Bushing, Ecentric Turning.

Foundry: Study of foundry - green sand – properties – patterns – Types

- Solid Pattern - Stepped pulley, Bearing top, Gear wheel. Split Pattern - T

Pipe, Bent Pipes, Dumbles - Loose Piece pattern - Dovetail

- Core - Cores sand - Cylindrical coremaking.

Welding Exercises

Arc welding principles and components - Arc Welding - Lap Joint - Butt Joint, T Joint,Corner joint. Gas welding equipments – components - Gas welding - Lap Joint, Butt Joint, T Joint, Corner Joint. Gas cutting - Spot Welding.

Exercises

PART A – Lathe Exercises

Note: All Dimensions are in mm. All linear dimensions in \pm 0.5mm tolerance. All cylindrical dimensions in \pm 0.2mm tolerance. Estimate the cost of the job for following exercises for M.S. round rod with suitable raw material for the final size. Final job of the raw material should be retained for verification. (Student wise or batch wise).

Prepare the specimen and make the Step turning & Taper turning as shown in figure using the Lathe

1.Prepare the specimen and make the Step turning & Taper turning as shown in figure using the Lathe.

2. Prepare the specimen and make the Step turning & Knurling as shown in figure using the Lathe.

3.Prepare the specimen and make the Step turning &BSW Thread cuttingas shown in figure using the Lathe.

4.Prepare the specimen and make the Shaft and Bush as shown in figure using the Lathe

5.Prepare the specimen and make the Step turning & BSW and MetricThread cutting as shown in figure using the Lathe.

6.Prepare the specimen and make the Eccentric turning as shown in figure using the Lathe.

PART B – Exercises

- 1.Prepare the green sand moulding using a Solid Pattern in the foundry.(Stepped pulley, Bearing top, Gear wheel)
- 2.Prepare the green sand moulding using a Split Pattern in the foundry.(T Pipe, Bent Pipes, Dumbles)
- 3.Prepare the green sand moulding using a Loose Piece pattern in the foundry.(Dovetail)
- 4.Prepare the specimen and make the Lab joint by the Arc Welding(Both side welded). (Raw material 25mmX6mm MS flat)

5.Prepare the specimen and make the T joint by the Arc Welding(Both side welded).

(Raw material 25mmX6mm MS flat)

6.Prepare the specimen and make the corner joint by the GasWelding. (Raw material 25mmX3mm MS sheet)

7.Prepare the specimen and make the Butt joint by the Spot welding. (Raw material 25mmX3mm GI sheet)

PART-A	55 MARKS
Procedure / Preparation	10 Marks
Machining /Dimensions	35 Marks
Finishing	10 Marks
PART-B	40 MARKS
Procedure / Preparation	10 Marks
Machining /Dimensions	25 Marks
Finishing	5 Marks
Viva voce	5 Marks
Total marks	100 Marks

Allocation of marks for Autonomous Examination

LIST OF EQUIPMENT

1. Ce	enter Lathe 4 ½ ' Bed length	– 15 No's	
2.4	Jaw / 3 Jaw Chucks	-	required
Nu	umbers		
3. Cł	nuck key (10 mm x 10 mm size)	– 15 No's	6
4. Bo	ox spanner	– 15 No's	5
5. Cu	utting Tool H.S.S ¼ " X ¼ " X 4 " long -	15 No's	
6. Pi	tch gauge	– 5 Nos	
7. Ve	ernier Caliper (0-25 and 25-50)	– 5 nos e	each
8. Mi	crometer, Inside and Outside(0-25 and 25-50) - 5 each		
9. Ve	ernier Height Gauge(300mm)	- 1 no	
10. Sr	nap gauge	- 1 set	
11. Ge	ear tooth Vernier	- 1 No	
12. Pa	arallel Block	- 2 Nos	
13. St	eel Rule (0-150)	– 15 Nos	
14. Ou	utside and Inside Calipers	- 15 Nos.	each

Department Of Mechanical Engineering	Implemented from 2020 - 2021
15. Thread gauge	– 5 Nos.
16. Bevel Protractor	– 1 No
17. Jenny Caliper	– 5 Nos.
18. Dial Gauge with Magnetic Stand	– 5 Nos.
19. Marking Gauge	– 10 Nos.
20. Safety Glass	– 15 Nos.
Arc welding booth	-2 No's with oil /air
cooled welding transformer with accesso	pries
21. Gas welding unit (Oxygen and acetyler	ne cylinder) – 1 Set
22. Flux	- 500 grams
23. Electrode 10 SWG	– 200 No's
24.Face shield- 3 No's	
25.Gas welding goggles	– 2 No's
26. Leather Glows 18"	– 4 Set
27. Flux chipping hammer	– 4 No's
28. Spot welding machine	- 1 No
29. Crucible furnace	- 1 No
30. Tilting furnace	- 1 No
31. Shovel	- 20 Nos
32. Rammer set	- 30 Nos
33. Slick	- 30 Nos
34. Strike-off bar	- 30 Nos
35. Riddle	- 15 Nos
36. Trowl	- 30 Nos
37. Lifter	- 30 Nos
38. Sprue pin	- 60 Nos
39. Brush	- 20 Nos
40. Vent rod	- 30 Nos
41. Draw spike	- 30 Nos
42. Gate cutter	- 30 Nos
43. Cope box	- 30 Nos
44. Drag box	- 30 Nos

Department Of Mechanical Engineering		Implemented from 2020 - 2021
45. Core be	ox	- 10 Nos
46. Runner	r & riser	- 60 Nos
47. Mouldir	ng board	- 30 Nos
48. Pattern	is - 5 Nos each	

IV TERM

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 4206
Term	: IV
Course Name	: THERMAL ENGINEERING - I

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16						16 weeks
	Instructions		Examin ation			
COURSE			Marks			
	/Week S	Semester	Internal Assessment	Autonomous Examinations	Total	Duration
THERMAL ENGINEERING - I	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.	
I	I Basics of thermodynamics and thermodynamic processes of perfect gases		
Π	Steady flow energy equation, thermodynamic air cycles and heat transfer		
III	Refrigeration and air conditioning	13	
IV	Internal combustion engines	15	
V	Fuels & combustion of fuels and performance of I.C engines	15	
Test & Model Exam			
Total			

RATIONALE:

A diploma holder in mechanical engineering is supposed to have

The knowledge on the concept of Thermodynamics, Thermodynamic Processes, Steady flow energy equation, thermodynamic air cycle and heat transfer ,internal combustion engine and combustion offuels ans performance of I.C engines.

OBJECTIVES:

- Explain basics of systems, laws of thermodynamics and thermodynamic processes.Explain different types of air cycles.
- Apply steady flow energy equation for nozzles and condensers etc., Explain vapour compression and vapour absorption refrigeration system.Compare the properties and applications of various refrigerants.
- Describe the equipment used for air conditioning.Explain the types and functions of I.C engines.
- > Explain the performance tests on I.C engine.
- Compare the modes of heat transfer and evaluate heat transfer by various modes.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
3F 4206 -CO1	Ability to evaluate thermodynamic properties of substances.	Α
3F 4206 -CO2	Ability to estimate the efficiency of air cycles and application of steady flow energy equation.	U
3F4206 -CO3	Ability to Illustrate the fundamental principles and applications of refrigeration and air conditioning system	Α
3F4206 -CO4	Ability to Understand I.C. Engines and Cycles of operation.	U
3F4206 -CO5	Ability to Evaluate performance Analysis of I.C Engine	Α

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
I	Basics Of Thermodynamics And Thermodynamic	15
	Processes Of Perfect Gases	
	Basics Of Thermodynamics	
	Introduction – definitions and units of mass, weight, volume,	
	density, work -power- energy - types- specific weight, specific	
	gravity and specific volume - pressure - units of pressure -	
	temperature - absolute temperature - S.T.P and N.T.P	
	conditions - heat - specificheat capacity at constant volume and	
	at constant pressure – law of conservation of energy –	
	thermodynamic system- types - thermodynamic equilibrium -	
	properties of systems - intensive and extensive properties -	
	State of System- process - cycle - point and path functions -	
	zeroth, first and second laws of thermodynamics.	
	Thermodynamic Processes Of Perfect Gases	
	Perfect gases-laws of perfect gases - Boyle's, Charles',	
	Joule's, Regnault's and Avogadro's laws–General Gas	
	Equation- characteristic gas equation-relation between specific	
	heats and gas constant- universal gas constant-problems-	
	Thermodynamic Processes-Change in Internal Energy-	
	enthalpy -change in enthalpy- entropy - change in entropy -	
	general equations for change in entropy.	
	Constant volume, constant pressure , isothermal ,	
	isentropic (reversible adiabatic), polytropic, hyperbolic – P-V	
	and T-S diagrams, work done , change in internal energy ,	
	heat transfer, change in enthalpy, change in entropy for	
	various processes – problems –	
	Free expansion and throttling processes.	
II	Steady flow energy equation, thermodynamic air cycles and	15
	heat transfer	

	Steady flow energy equation	
	Steady flow system - control volume - steady flow energy	
	equation -assumptions -Engineering applications of steady flow	
	energy equation-non flow energy equation	
	Thermodynamic Air Cycles	
	Air cycles - air standard efficiency - reversible and irreversible	
	processes -assumptions in deriving air standard efficiency -	
	Carnot cycle - Otto cycle -Joule cycle - Diesel cycle -	
	comparison of Otto cycle and Diesel cycle -Comparison of ideal	
	and actual p-V diagramsof Otto and Diesel cycles -problems .	
	Heat Transfer	
	Modes of heat transfer – heat transfer by conduction – Fourier's	
	Law- Thermal conductivity – heat conduction through plane and	
	composite walls - heat conduction through a cylinder - heat	
	transfer by convection -heat exchanger - Parallel flow and	
	Counter flow – LMTD– forced convection – natural convection –	
	heat transfer by radiation - Radioactive properties definitions of	
	block and white and anony a transportant 9 grow hading	
	black and white and opaque, transparent & grey bodies.	
III	Refrigeration And Air Conditioning	13
111	Refrigeration And Air ConditioningRefrigeration – refrigerators and heat pumps – types and	13
111	Black and white and opaque , transparent & grey bodies. Refrigeration And Air Conditioning Refrigeration – refrigerators and heat pumps – types and applications of refrigeration Systems – refrigerating effect – unit of	13
111	Black and white and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration — refrigerators and heat pumps — types andapplicationsof refrigeration Systems —refrigerating effect —unit ofRefrigeration —C.O.P. — actual C.O.P Air Refrigeration System	13
111	Black and white and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration — refrigerators and heat pumps — types andapplicationsof refrigeration Systems —refrigerating effect —unit ofRefrigeration —C.O.P. — actual C.O.P Air Refrigeration System— reversed Carnotcycle — C.O.P of refrigerator, heat pump	13
111	Black and white and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration — refrigerators and heat pumps — types andapplicationsof refrigeration Systems —refrigerating effect —unit ofRefrigeration —C.O.P. — actual C.O.P Air Refrigeration System— reversed Carnotcycle — C.O.P of refrigerator, heat pump&Heat Engines —Power Required —Mass of Ice Produced —	13
111	Black and white and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration — refrigerators and heat pumps — types andapplicationsof refrigeration Systems —refrigerating effect —unit ofRefrigeration —C.O.P. — actual C.O.P Air Refrigeration System— reversed Carnotcycle — C.O.P of refrigerator, heat pump&Heat Engines —Power Required —Mass of Ice Produced —Problems. Bell-coleman cycle— problems — Vapour compression	13
111	Black and white and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration And Air ConditioningRefrigeration - refrigerators and heat pumps - types andapplicationsof refrigeration Systems -refrigerating effect -unit ofRefrigeration -C.O.P actual C.O.P Air Refrigeration System- reversed Carnotcycle - C.O.P of refrigerator, heat pump&Heat Engines -Power Required -Mass of Ice Produced -Problems. Bell-coleman cycle- problems - Vapour compressionrefrigeration system - vapourabsorption system -	13
111	Refrigeration And Air Conditioning Refrigeration – refrigerators and heat pumps – types and applicationsof refrigeration Systems –refrigerating effect –unit of Refrigeration –C.O.P. – actual C.O.P Air Refrigeration System – reversed Carnotcycle – C.O.P of refrigerator, heat pump &Heat Engines –Power Required –Mass of Ice Produced – Problems. Bell-coleman cycle– problems – Vapour compression refrigeration system - vapourabsorption system – Comparision - refrigerants – properties. Psychrometry-	13
111	Black and write and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration And Air ConditioningRefrigeration - refrigerators and heat pumps - types andapplicationsof refrigeration Systems - refrigerating effect - unit ofRefrigeration -C.O.P actual C.O.P Air Refrigeration System- reversed Carnotcycle - C.O.P of refrigerator, heat pump&Heat Engines -Power Required -Mass of Ice Produced -Problems. Bell-coleman cycle- problems - Vapour compressionrefrigeration system - vapourabsorption system -Comparision - refrigerants - properties. Psychrometry-psychometric properties - dry air - moist air - water vapour	13
111	Black and white and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration And Air ConditioningRefrigeration - refrigerators and heat pumps - types andapplicationsof refrigeration Systems - refrigerating effect - unit ofRefrigeration -C.O.P actual C.O.P Air Refrigeration System- reversed Carnotcycle - C.O.P of refrigerator, heat pump&Heat Engines -Power Required -Mass of Ice Produced -Problems. Bell-coleman cycle- problems - Vapour compressionrefrigeration system - vapourabsorption system -Comparision - refrigerants - properties. Psychrometry-psychometric properties - dry air - moist air - water vapour- saturated air - dry bulb temperature - wet bulb	13
11	Black and white and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration And Air ConditioningRefrigeration - refrigerators and heat pumps - types andapplicationsof refrigeration Systems -refrigerating effect -unit ofRefrigeration -C.O.P actual C.O.P Air Refrigeration System- reversed Carnotcycle - C.O.P of refrigerator, heat pump&Heat Engines -Power Required -Mass of Ice Produced -Problems. Bell-coleman cycle- problems - Vapour compressionrefrigeration system - vapourabsorption system -Comparision - refrigerants - properties. Psychrometry-psychometric properties - dry air - moist air - water vapour- saturated air - dry bulb temperature - wet bulbtemperature- wet bulb depression - dew point	13
11	Black and white and opaque , transparent & grey bodies.Refrigeration And Air ConditioningRefrigeration And Air ConditioningRefrigeration - refrigerators and heat pumps - types andapplicationsof refrigeration Systems - refrigerating effect - unit ofRefrigeration -C.O.P actual C.O.P Air Refrigeration System- reversed Carnotcycle - C.O.P of refrigerator, heat pump&Heat Engines -Power Required -Mass of Ice Produced -Problems. Bell-coleman cycle- problems - Vapour compressionrefrigeration system - vapourabsorption system -Comparision - refrigerants - properties. Psychrometry-psychometric properties - dry air - moist air - water vapour- saturated air - dry bulb temperature - wet bulbtemperature- wet bulb depression - dew pointtemperature - dew pointdepression - humidity - specific	13

	presses of the besting and seeling. Dy Dees Fester	
	processes – sensible heating and cooling- By-Pass Factor-	
	humidification – dehumidification –Mixing of Air Stream. Air	
	conditioning – classification and applications of air	
	conditioning system - room air conditioning - central air	
	conditioning - comparison-comfort and industrial air	
	conditioning - factors to be considered in air conditioning -	
	loads encountered in air conditioning systems.	
IV	Internal Combustion Engines	15
	Internal combustion engines. Classifications of I.C Engines -	
	components of I.C Engines and functions material and method of	
	manufacturing - four stroke cycle petrol and diesel engines - two	
	stroke cycle petrol and diesel engines - comparison of four stroke	
	and two stroke engines - Comparison of petrol and diesel	
	engines - valve timing diagram for four stroke petrol and diesel	
	engines - port timing diagram for two stroke petrol and diesel	
	engines. Layout of fuel supply system in petrol engines -A.C.	
	mechanical fuel pump - simple carburetor - layout of fuel supply	
	system in diesel engine- single acting fuel feed pump – CAV fuel	
	injection pump - fuel injectors - types of nozzles -fuel filters.	
	Ignition systems - battery coil ignition systems - magneto	
	ignition system-MPFI and CRDI System.Governing of I.C.	
	engines - quantity and quality governing - cooling systems -air	
	cooling - water cooling. Lubrication system - properties of	
	lubricantstypes of lubrication systemsPetrol and high	
	pressure Lubrication system- oil pump (Gear & Rotor Pumps)	
	and oil filters.	
V	Fuels & Combustion Of Fuels And Performance Of I,C	15
	Engines	
	FUELS & COMBUSTION OF FUELS	
	Classifications of fuels - merits and demerits - requirements	
	of a good fuel - properties of fuel - calorific value of fuels -	
	higher and lower calorific values - determination of	

 calorific value – Bomb and Junker's calorimeter – problems.
Performance Of I.C Engines
Testing - thermodynamic and commercial tests – indicated
power – brake power– friction power – efficiencies of I.C.
engines – indicated thermal ,brake thermal, mechanical and
relative efficiencies Specific fuel consumption – problems Morse test – procedure–heat balance sheet – procedure.

Reference Books:

- 1. Thermal Engg, R.K.Rajput, 10 th Edition,2018, Laxmi publications Pvt Ltd , New Delhi.
- 2. Applied Thermodynamics, P.K. Nag, 2nd Edition,2017, TATA Mcgraw – Hill PublishingCompany, New Delhi .
- Thermal Engineering, R.S. Khurmi and J.K. Gupta, 2020 , S. Chand & Co, NewDelhi.
- 4. Thermal Engineering, P.L Ballaney, 24th Edition Khanna Publishers, New Delhi.
- 5. Thermal Engineering, B.K. Sarkar , 2017 , Dhanpat Rai & Sons New Delhi .
- 6. Applied Thermodynamics, 2016,Domkundwar and C.P Kothandaraman, Khannapublishers, New Delhi.

Programme : DIPLOMA IN MECHANICAL ENGINEERING Course Code : 3F 4207 Term : IV

Course Name : MANUFACTURING TECHNOLOGY-II

TEACHING AND SCHEME OF EXAMINATION

			No	of weeks per se	mester:	16 weeks
	Inst	ructions		Examination		
COURSE	Hours	Hours /	Marks			
	/ Week	Semester	Internal Assessment	Autonomous Examination	Total	Duration
Manufacturing						
Technology-II	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Theory of Metal Cutting, Drilling Machine & Abrasive Process	12
II	Reciprocating Machines and Broaching	16
III	Milling Machines and Gear Generating	16
IV	Unconventional Machining Processes	15
V	CNC Machine and CNC Programming	14
	Test & Model Exam	7
	Total	80

RATIONALE:

In the process of manufacturing we should possess adequate and through knowledge about the working of conventional as well as non-conventional machines. The topics included aim to inculcate in the students the skills of metal cutting, milling, grinding, CNC machines and other machining processes which

are very much essential for atechnician to at promptly and with precision.

OBJECTIVES:

- Study the working of various machine tools: Planer, Shaper, Drilling and Slotter.
- Study the various work holding devices
- Study various types of milling cutter.
- > Study the different types of grinders and grinding wheels.
- > Study the broaching operation and their applications.
- > Study the milling procedure for spur, helical and bevel gears.
- Study the various types of gear generating processes
- > Study the use of non-conventional machining processes.
- Study the CNC machines working principle and its components.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
	Ability to explain the nomenclature of twist drill, types	R
4F4207 -CO1	of drill and drilling machines and principles of	
	operation in drilling and knowledge of measuring	
	instruments.	
4E4207 -CO2	Ability to illustrate of reciprocating machines and	U
	nomenclacture of tools machining operations.	
4F4207 -CO3	Ability to analysis of gear generating processes and	U
	milling attachment principle of milling operations.	
4F4207 -C.O4	Ability to explain of nonconventional machining and	R
	abrasive processes operations.	
	Ability to discuss of CNC machines advantages	U
4F4207 -CO5	disadvantages application and components of CNC	
	machines.	

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
1	THEORY OF METAL CUTTING, DRILLING	12
	MACHINE & ABRASIVEPROCESS	
	Theory of metal cutting	
	Introduction - orthogonal cutting - oblique cutting - single point	
	cutting tool - nomenclature - types of chips - chip breakers -	
	cutting tool materials - properties - tool wears - factors affecting	
	tool life – cutting fluids – functions – properties of cutting fluid.	
	Drilling machines	
	Drills - flat drills - twist drills - nomenclature of twist drill - types	
	of drilling machines – bench type – floor type – radial type – gang	
	drill - multi spindle type - principle of operation in drilling -	
	methods of holding drill bit - drill chucks - socket and sleeve -	
	drilling operation - reaming, counter sinking, counter boring, spot	
	facing, tapping and deep hole drilling.	
	Abrasive process	
	Types and classification – specifications – rough grinding –	
	pedestal grinders - portable grinders - belt grinders. Precision	
	grinding - cylindrical grinder - centerless grinders - surface	
	grinder - tool and cutter grinder - planetary grinders - principles	
	of operations – grinding wheels – abrasives – natural and artificial	
	diamond wheels - types of bonds - grit, grade and structure of	
	wheels - wheel shapes and sizes- standard marking systems of	
	grinding wheels - selection of grindingwheel - mounting of	
	grinding wheels - dressing and truing of wheels - balancing of	
	grinding wheels.	
11	RECIPROCATING MACHINES	16

	Planer	
	Introduction – description of double housing planner –	
	specifications - principles of operation - drives - quick return	
	mechanism - feed mechanism - work holding devices and	
	special fixtures - types of toolsoperations.	
	Shaper	
	Introduction – specifications – principles of operations – standard	
	shaper – quick return mechanism – crank and slotted link –	
	hydraulic shaper - feed mechanism - work holding devices -	
	fixture – operations.	
	Slotter	
	Introduction - specifications - method of operation - whitworth	
	quick return mechanism - feed mechanism – work holding	
	devices – types of tools.	
	Broaching	
	Types of broaching machine - horizontal, vertical and continuous	
	broaching – principles of operation – types of broaches –	
	classification broach tool nomenclature – broaching operations.	
	MILLING MACHINES AND GEAR GENERATING PROCESSES	16
	Milling machines	
	Types – column and knee type, plain, vertical and universal milling	
	machines - principles of operation - specification of milling	
	machines- work holding devices - tool holding devices - arbor -	
	stub arbor -spring collet - adaptor. Milling cutters - cylindrical	
	milling cutter -slitting cutter - side milling cutter - angle milling	
	cutter - T slot milling cutter - woodruff milling cutter - fly cutter -	
	nomenclature of cylindrical milling cutter. Milling operations -	
	straddle milling - gang milling - vertical milling attachment.	
	Indexing plate - differential indexing - simple indexing and	
	compound indexing – simple problems.	
	Generating processes	

	Gear shaper – gear hobbing – principle of operations only. Gear	
	finishing processes – burnishing – shaving – grinding and lapping	
	-gear materials.	
IV	UNCONVENTIONAL MACHINING PROCESSES	15
	Mechanical energy based process	
	Introduction - classification - process selection - advantages -	
	limitations - demerits of conventional processesMechanical	
	energy based process: Introduction - abrasive jet machining -	
	metal removal rate process parameters - water jet machining -	
	hydrodynamic jet machining - ultrasonic machining process -	
	advantages - disadvantages - applications - compare ultrasonic	
	machining with traditional abrasive machining.	
	Electrical energy based processes	
	Introduction - electrical discharge machine (EDM) - flushing	
	system in EDM - tool (electrode) materials - tool wear - metal	
	removal rate and surface finish - factors affecting the metal	
	removal rate - advantages - disadvantages - applications - wire	
	cut EDM features of wire cut EDM – difference between EDM and	
	wire cut EDM.	
	Chemical and electrochemical energy based processes	
	Extrusion-general features of single screw extrusion - twin screw	v
	extruders and types-Injection moulding types : Plunger type	
	Reciprocating screw injection - details of injection mould -	_
	structural Foam injection mould – sandwich moulding – gas	5
	injection moulding - injection moulding of thermosetting materials	3
	calendaring and rotational moulding. Design consideration fo	r
	plastic components.	
	Thermal energy based processes	
	Introduction - electron beam machining - laser beam machining	
	- lasing materials - machining applications of laser - plasma arc	
	machining - gases used in plasma arc machining - types of	

	plasmaarc torches -advantages - disadvantages - applications.	
	Introduction to newer machining process and Additive	
	manufacturing.	
V	CNC MACHINE AND ITS COMPONENTS	14
	CNC machines	
	Numerical control – definition – working principle of a CNC	
	system – features of CNC machines – advantages of CNC	
	machines – difference between NC and CNC – construction and	
	working principle of turning centre – construction and working	
	principle of machining centre - machine axes conventions turning	
	centre and machining centre – co- ordinate measuring machine –	
	construction and working principle.	
	Components of CNC machine	
	Slide ways - requirement - types - friction slide ways and anti-	
	friction slide ways - linear motion bearing - recirculation ball	
	screw - ATC - tool magazine - feedback devices - linear and	
	rotary transducers – encoders– in process probing – tool material	
	- tool inserts.	
	CNC Programming:	
	Introduction - Cartesian coordinate system - Polar coordinate	
	system – Absolute and incremental positioning – Purpose of G	
	and M codes. Basic codes - basic CNC program. CNC turning	
	program using linear interpolation and circular interpolation.	
	Machine control panel – Homing position – Offset setting– Auto.	
	CNC milling program using linear interpolation and circular	
	interpolation. Compensation - Machine control panel - Home	
	position–Work offset setting procedure – Tool offset .	

Reference Book:

 Elements of Workshop Technology- Vol. I & II, Hajra Choudry & Battacharya, Edn.15, published by Media Promoters and Publishers Pvt. Ltd., Seervai Buildings `B', 20-G, Noshir Bharucha Marg, Mumbai 400 007 – 2016.

2. Production Technology, Jain & Gupta, Khanna Publishers, 2-B, North Market, Naisarak, New Delhi – 110 006 – 2006.

3. Production Technology, HMT, 2017, published by Tata McGraw Hill Publishing Co.Ltd., 7, West Patel Nagar, New Delhi 110 008.

4. Manufacturing process, Myro N Begman, , Edn. 5, Tata McGraw Hill Publishing Co. Ltd.,7, West Patel Nagar, New Delhi 110 008.

5. Workshop Tech Vol I,II, III, WAJ. Chapman, published by Viva Books Pvt. Ltd., 4262/3,Ansari Road, Daryaganj, New Delhi 110 002.

6. Production processes, NITTTR, published by 5, Tata McGraw Hill Publishing Co. Ltd., West Patel Nagar, New Delhi 110 008.

 Principles of the manufacturing of Composite materials – Suong V Hoa, DES techpublication. Inc, 439, North Duke street, Lancaster, Pennsylvania – 17602 U.S.A.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 4301
Term	: IV
Course name	: Measurements and Metrology

TEACHING AND SCHEME OF EXAMINATION

			No of	[:] weeks per sem	ester: 1	6 weeks
COURSE	Insti	ructions	Exam	ination		
Measurements	Hours	Hours /	Marks			Duration
and Metrology	/ Week	Semester	Internal Assessment	Autonomous Examinations	Total	Duration
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marksfor result.

Topics and Allocation of Hours

Unit		Hours
No	Topics	
I	Basic Concepts of Measurements	15
II	Linear and Angular Measurements	15
	Form Measurement	15
IV	Advances in Metrology	14
V	Measurement of Mechanical Parameters	14
	Test and Revision	7
	Total	80

RATIONALE:

Measurements and metrology are the basic and prominent tools in all the industries in the present scenario. The students should be trained not only in manufacturing also they should have knowledge about the various measuring instruments which is used in industries. This will provide the students an

opportunity to skill themselves for how to handle the various metrological equipment available to measure the dimensions of the components.

OBJECTIVES

- > Study about the basic concepts of measurements.
- > Acquire knowledge about precision and accuracy.
- > Describe about the various linear and angular measurements.
- > Acquire knowledge about the measurement of screw threads and gears.
- > Study about the laser metrology and computer in metrology.
- Describe the measurement of mechanical parameters force, power and flow.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	BTL	
CO1	Understand the basic concepts of measurements, Precision and Accuracy	U
CO2	Explain the working principle of devices used for linear & angular measurements.	U
CO3	Understand the devices for gear, screw threads and surface finish measurements.	U
CO4	Explain the devices used in Laser Metrology and concepts involved in Coordinate measuring machines	A
CO5	Explain the devices used for the measurement of mechanical parameters force, power and flow	E

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
I	BASIC CONCEPTS OF MEASUREMENTS	15
	Introduction	
	Basic units - system concepts used in measuring technology -	

	measuring instruments - length, angles and surface - scope of	
	Metrology - standardization - international standardization, the	
	bureau of Indian standards - legal Metrology - definition -	
	applications - important elements of measurements - methods of	
	measurements - needs for inspection - need for measurement -	
	important terminology.	
	Precision and accuracy	
	Precision - definition - accuracy - definition - difference between	
	precision and accuracy - factors affecting the accuracy of the	
	measuring system - general rules for accurate	
	measurements -precautions for use of instruments so as to avoid	
	in accuracy in measurements - reliability - definition - error -	
	definition - sources of errors - classification of error - compare	
	systematic error and random error - selection of measuring	
	instruments - symbols for metallurgical terms (ASME and ISO).	
II	LINEAR AND ANGULAR MEASUREMENTS	15
II	LINEAR AND ANGULAR MEASUREMENTS Linear measurements	15
II	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction	15
II	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper,	15
II	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge-	15
II	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier	15
II	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier height gauge- micrometer - inside micrometer - thread	15
Ι	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer -	15
Ι	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges -	15
Ι	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use.	15
Ι	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use. Angular measurements	15
Ι	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use. Angular measurements Introduction - vernier bevel protractor - universal bevel protractor	15
Ι	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use. Angular measurements Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations -	15
Ι	LINEAR AND ANGULAR MEASUREMENTS Linear measurements Classification of linear measurement instrument - construction and the principles only - Steel rule - callipers - outside calliper, inside calliper, Jenny caliper - combination set - feeler gauge- pitch screw gauge - Vernier caliper - digital caliper – Vernier height gauge- micrometer - inside micrometer - thread micrometer - optical micrometer - light wave micrometer - possible sources of errors in micrometers - slip gauges - requirements - Indian standard - care and use. Angular measurements Introduction - vernier bevel protractor - universal bevel protractor - optical bevel protractor. Sine bar - types - uses and limitations - working principle of clinometer, autocollimator, angle dekkor.	15

	mechanical comparator, optical comparator, electrical comparator,	
	pneumatic comparator - principles - advantages and	
	disadvantages - compare comparator with measuring instruments	
	- compare electrical and mechanical comparators.	
III	FORM MEASUREMENT	15
	Measurement of screw threads	
	Screw thread terminology - error in thread - measurement of	
	various elements of thread (description only) - thread gauges -	
	classification- plug screw gauges, ring screw gauges, caliper	
	gauges - adjustable thread gauge - gauging of taps - function of	
	various types of gauges floating carriage micrometer.	
	Measurement of gears	
	Introduction - types of gear - gear terminology - gear errors - spur	
	gear measurement - run out, tooth	
	measurement, profile measurement, lead checking backlash	
	checking, tooth thickness measurement - vernier gear tooth	
	caliper - David brown tangent comparator - constant chord	
	method - measurement of concentricity, alignment checking -	
	Parkinson gear tester - Rolling gear testing machine - radius	
	measurement - radius of circle - surface finish measurement -	
	classification of geometrical irregularities - elements of surface	
	texture - methods of measuring surface finish - measuring surface	
	roughness - tracer type profilogram - double microscope.	
IV	ADVANCES IN METROLOGY	14
	Laser Metrology	
	Basic concepts of lasers - types of lasers - uses, advantages and	
	applications - laser telemetric system - laser and LED based	
	distance measuring instruments - scanning laser gauge -	
	photodiode array imaging - diffraction pattern technique - laser	
	triangulation sensors - two frequency laser interferometer -	
	gauging wire diameter from the diffraction pattern formed in laser -	
	interferometry - use of laser in interferometry - interferometer -	

	standard interferometer, single beam interferometer, AC	
	interferometer, Michelson interferometer, dual frequency laser	
	interferometer - Twyman green interferometer - applications.	
	Computer in Metrology	
	Coordinating measuring machine - introduction - types of	
	measuring machines - types of CMM - futures of CMM - causes	
	of errors in CMM - 3 co-ordinate measuring machine -	
	performance of CMM - applications - advantages disadvantages -	
	computer controlled coordinating measuring machine -	
	mechanical system of computer controlled CMMs - trigger type	
	probe system, measuring type prop system, features of CNC and	
	CMM - features of CMM software - factors affecting CMM - digital	
	devices - Computer based inspection - Computer aided	
	inspection using robots.	
V	MEASUREMENT OF MECHANICAL PARAMETERS	14
	Force	
	Measurement of force - Direct methods - equal arm balance,	
	unequal arm balance, multiple lever system, pendulum scale –	
	indirect methods - electromagnetic balance - load cells -	
	hydraulic load cell, pneumatic load cell, strain gauge load cell,	
	share type load cell, electronic weighing system. Torque	
	measurement - torque measurement using strain gauge - laser	
	optical torque measurement- stroboscope for torque	
	measurement.	
	Measurement of power	
	Mechanical dynamometer - DC dynamometer - inductor	
	dynamometer - hydraulic dynamometer - diaphragm pressure	
	sensor - deform cage with LVDT - diaphragm gauge with strain	
	gauges - piezoelectric sensors.	
	Measurement of flow	
	Types of flow metres - rotameter, electromagnetic flow metre,	,
	hot wire anemometer, ultrasonic flow metre, laser Doppler	

anemometer (LDA) - reference beam mode, interference French mode.

Reference Books:

- Mechanical Measurements and Instrumentation, Rajput R K, S.K.Kataria and Sons.
- Mechanical Measurement and Control, Jalgaonkar R.V, Everest PublishingHouse.
- Mechanical and Industrial Measurements, Jain R K, Khanna Publications.
- 4. Instrumentation Devices and Systems, Narang C S, TataMcGraw HillPublications.
- Instrumentation, Measurement and Analysis, Nakra B.C, Chaudhary K.K, Tata McGraw Hill Publications

Programme	:	DIPLOMA IN MECHANICAL ENGINEERING
Course Code	:	3F 4403
Term	:	IV
Course name	:	E Vehicle Technology & Policy

TEACHING AND SCHEME OF EXAMINATION

			No of w	eeks per semest	er: 16 w	eeks
COURSE	Inst	ructions		Examination		
E Vehicle	Hours	Hours /		Marks		
Technology	/Week	Semester	Internal	Autonomous	Total	Duration
&Policy			Assessment	Examinations		
	4	64	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
Ι	Environmental impact and history, Types of Electric Vehicles	12
II	Electric vehicle, Electrical Propulsion System	12
III	Energy Storages, Charging System, Effects and Impacts	11
IV	Electric Mobility Policy Frame Work	11
V	Tamilnadu E-Vehicle Policy 2019	11
	Test And Revision	7
	Total	64

RATIONALE:

The world is transitioning to cleaner mobility options with the aim at improving air quality and reducing dependency on fossil fuels. Electric Vehicles (EVs) have emerged a popular clean mobility choice to reduce emissions. EVs are powered fully or partially by batteries, they can help to reduce dependence on fossil fuels also air quality. Tamil Nadu is one of the most advanced states in India. Tamil Nadu has a highly developed industrial eco-system and is very strong in sectors like automobiles and auto- components. Many globally renowned companies have setup their manufacturing facilities in Tamil Nadu. Due the rapid depletion of fossil fuel and increase in fuel cost, environmental pollution, the shift to clean transport is necessary. This subject introduced by keeping all the above factors.

OBJECTIVES:

- > To learn the environmental impact and history of Electric Vehicles.
- > To understand the concept of Electric Vehicle and its types.
- > To study the configurations of Electric Vehicles
- > To acquire knowledge about Energy Storages, Charging System,

Effects and Impacts

To appreciate the Electric Mobility Policy Frame work India and EV PolicyTamil Nadu 2019.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	BTL	
CO1	Ability to Understand the Environmental impact of conventional vehicle and Types of Electric Vehicles.	U
CO2	Ability to explain the Electric Vehicles and Electric Propulsion Systems.	U
CO3	Ability to describe the construction and functional features Energy Storages device, its charging and effects & impacts.	U
CO4	Ability to Summarize the Electric Mobility Policy Frame Work.	U
CO5	Ability to Remember the Tamil Nadu E-Vehicle Policy 2019	R

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
I	Environmental impact and history:	12
	Environmental impact of conventional vehicle - Air pollution -	
	Petroleum resources - History of Electric vehicles & Hybrid	
	Electric Vehicles - Conventional drive train system - Rear	
	Wheel, Front Wheel and All wheel - Parts of Drive train system	
	Types of Electric Vehicles:	
	Introduction to Battery Electric Vehicle (BEV) – Definition BEV	
	- Necessity BEV - Different between BEV and Conventional	
	Vehicle - Advantages of BEV - Block diagram of BEV – Hybrid	
	electric Vehicle (HEV) - Plug-in Hybrid Electric Vehicle (PHEV)	
	- Fuel Cell Electric Vehicle (FCEV) - Description.	
II	Electric Vehicles:	12
	Configurations of Electric Vehicle - Performance of Electric	
	Vehicles – Tractive Effort in Normal Driving – energy	
	consumption.	
	Hybrid Electric Vehicles: Concept of Hybrid electric drive	
	trains- Architecture of Hybrid Electric Drive trains - Series,	
	Parallel and Series & Parallel	
	Electric Propulsion Systems:	
	Types of EV motors - DC motor drives- Permanent Magnetic	
	Brush Less DC Motor Drives (BLDC) – Principles, Construction	
	and Working – Hub motor Drive system – Merits and Demerits	
	of DC motor drive, BLDC motor drive.	

111	Energy Storages:	11
	Electrochemical Batteries – Battery Technologies – Construction	
	and working of Lead Acid Batteries, Nickel Based Batteries and	
	Lithium Based Batteries - Role of Battery Management System	
	(BMS)- Battery pack development Technology- Cell Series and	
	Parallel connection to develop battery pack.	
	Charging:	
	Battery Charging techniques - Constant current and Constant	
	voltage, Trickle charging – Battery Swapping Techniques – DC	
	charging – Wireless charging – Maintenance of Battery pack –	
	Latest development in battery chemistry.	
	Effects and Impacts:	
	Effects of EV - Impacts on Power grid - Impacts on	
	Environment – Impacts on Economy.	
IV	Electric Mobility Policy Frame Work Government of India Electric Mobility Policy Frame work –	11
	Global Scenario of EV adoption – Electric mobility in India –	
	National Electric Mobility Mission Plan 2020 - Action led by	
	Original Equipment Manufacturers - Need of EV Policy -	
	Advantage of EV Eco system - Scope and Applicability of EV	
	Policy – ARAI Standards for Electric Vehicle – AIS 038, AIS 039	
	&AIS 123 - Key Performance Indicator - Global impact – Trends	
	and Future Developments	
V	Tamil Nadu E-Vehicle Policy 2019	11
	Tamil Nadu E-vehicle Policy 2019: Vehicle Population in Tamil	
	Nadu – Objectives of EV Policy – Policy Measures – Demand	
	side incentives - Supply side incentives to promote EV	
	manufacturing – Revision of Transport Regulation of EV – City	
	building codes - Capacity Building and Skilling - Charging	
	structure – implementing agencies – Reasearch & Development	
	and Business Incubation – Recycling Ecosystem –	
	Battery and EVs.	

Reference Books

1. Modern Electric, Hybrid Electric and Fuel Cell Vehicles, Mehrdad Ehsani, Yimin Gao, Sebastien E.Gay, Ali Emadi, CR Press, London, New York.

 Comparison of Electric and Conventional Vehicles in Indian Market: Total Cost of Ownership, Consumer Preference and Best Segment for Electric Vehicle (IJSR), Akshat Bansal, Akriti Agarwal

 A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development (MDPI), Fuad Un-Noor, Sanjeevikumar Padmanaban, Lucian Mihet-Popa,Mohammad Nurunnabi Mollahand Eklas Hossain

4. Electric Vehicles: A future Projection CII October 2020 report. Design and analysis of aluminum/air battery system for electricvehicles, Shaohua Yang, Harold Knickle, Elsevier.

5. Propelling Electric Vehicles in India, Technical study of Electric vehicles, Shaohua Yang, Harold Knickle, Elsevier.

6.Propelling Electric Vehicles in India, Technical study of Electric Vehicles andCharging Infrastructure

7.ZERO EMISSION VEHICLES (ZEVs): TOWARDS A POLICY FRAMEWORK – NTI Aayog.

8.FASTER ADOPTION OF ELECTRIC VEHICLES IN INDIA: PERSPECTIVEOF CONSUMERS AND INDUSTRY, The Energyand Resources Institute, New Delhi.

9.India EV Story: Emerging Opportunities by Innovation Norway.10.Automotive Industry Standards – AIS 038, AIS 039 & AIS 123 – Manual.
Course Name	: MACHINE DRAWING & CAD PRACTICAL
Term	: IV
Course Code	: 3F 4208
Programme	: DIPLOMA IN MECHANICAL ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
COURSE	Hours / Week	Hours / Semester	Internal Assessment	Marks Autonomous Examinations	Total	Duration
MACHINE DRAWING & CAD PRACTICAL	5	80	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Diploma holders are required to read and interpret drawings. Hence it is essential that they should have competency in preparing drawings, sketches and assembly of various machine parts. The contemporary progressing world is fast with the latest production systems. The advanced manufacturing of products is developed instantly using CAD software. Even a small scale industry is now using a CAD software as it has become the heart of the design department. So CAD has now become inevitable in industries.

Accuracy and precision are the two important things that decide the quality of a product to survive its competitors in the market. Using CAD software design, the uniform accuracy, multiples of copies and storing in a small space for long time are assumed.

So drawing is an important subject to be studied by the students to carry and

complete the production and assembly process successfully.

OBJECTIVES:

- > To learn the parts and assembly of the machine components.
- > Appreciate the need of sectional view and types of sections.
- > Draw assembly and part drawings of various mechanical components.
- > To prepare geometrical model of various machine elements.
- > Draw sectional views using different types of sections.
- > Practice on CADD commands in making 2D Drawings.
- > Draw assembled drawings using CADD.
- > Draw sectional views using different types of sections.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

CO	Details	BTL
3F4208 -CO1	Ability to explain sectional views and types of sections	U
3F4208 -CO2	Ability to Illustrate assembly Drawing Knowledge of various types of machine elements using manual drafting.	U
3F4208-CO3	Ability to analyse on CADD commands in making simple 2D Drawings.	A
3F4208 -CO4	Ability to create sectional views using different types of sections.	С
3F4208 -CO5	Ability to create assembled drawings using CADD.	С

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

PART-A: MANUAL DRAWING PRACTICE

Sectioning - sectional views - representation of sectional plane - hatching - inclination - spacing - hatching large areas - hatching adjacent parts - full section

-half section – types of half sections – conventional representation of materials in section – Dimensioning - Detailed drawings of the machine parts are given to students to assemble and draw any two views of the machine elements in the Drawing Sheet. Front View /Full Section / Half Section Front View and Top View / Left Side View / Right Side View with dimensions.

PART-B: COMPUTER AIDED DRAFTING (CAD)

CAD applications – Hardware requirement – Software requirement – CAD screen interface– menus – Toolbars – types of co-ordinate system – Creating 2D objects –Using draw commands – Creating text – Drawing with precision – Osnap options – drafting settings – drawing aids – Fill, Snap, Grid, Ortho lines – Function keys –Editing and modify commands – Object selection methods – Erasing object – Oops –Cancelling and undoing a command– Copy – Move – Array – Offset – Scale – Rotate – Mirror – Break – Trim – Extend – Explode. Divide – Measure – stretch – Lengthen – Changing properties – Colour – line types – LTscale – Matching properties – Editing with grips – Pedit – Ddedit – Mledit - Basic dimensioning – Editing dimensions – Dimension styles – Dimension system variables.

Machine drawing with CAD.

Creation of blocks – Wblock – inserting a block – Block attributes – Hatching – Pattern types – Boundary hatch – working with layers – Controlling the drawing display – Blipmode – View group commands – Zoom, redraw, regen, regenauto, pan, viewers –Realtime zoom. Inquiry groups– calculating area – Distance – Time– Status ofdrawing– Using calculator. Plot Detailed drawings of the machine parts are given to students to assemble and draw any two views of the machine elements in the Drawing Sheet. Front View / Sectional Front View (Full Section / Half Section) and Top View / Left Side View / Right Side View with dimensions in the CAD software.

EXERCISE:

Draw the Front View / Sectional Front View (Full Section / Half Section) and Top

View / Left Side View / Right Side View in the given drawing sheet and create the same in the CAD package.

- 1. Sleeve & Cotter joint
- 2. Knuckle joint
- 3. Plummer Block
- 4. Simple Eccentric
- 5. Machine Vice
- 6. Protected type flanged coupling
- 7. Screw jack

ALLOCATION OF MARKS

Manual Drawing	
Assembled Front view	25
Assembled Top View / Side View	15
	40 marks
CAD	
Drafting	20
Assembly	15
Dimensioning	15
	50 marks
Viva-voce	10 marks
Total	100 marks

LIST OF EQUIPMENTS

- 1. Personal computer 30 Nos.
- 2. Printer 1 No.
- 3. Required Software's: Office Package, CAD Package Sufficient to the strength.

MODEL QUESTION PAPER

Programme: Mechanical Engineering	Max.marks:100
Course: Machine Drawing and CAD practical	Course code:3F 4208
Term: III	Time: 3 Hrs.

[Note:

1.PART -A question are to be answered in the drawing sheet only
PART – B question are to be answered using computer aided drafting (CAD)]
2. Note: Questions are to be asked in any one of the following

- A.1. Draw the Front View and left side view of SLEEVE & COTTER JOINT in the given drawing Sheet and create the same in the CAD software.
- B.1. Draw the Front View and left side view of KNUCKLE JOINT in the given drawing Sheet and create the same in the CAD software.
- C.1. Draw the Front View and left side view of PLUMMER BLOCK in the given drawing Sheet and create the same in the CAD software.
- D.1. Draw the Front View and left side view of SIMPLE ECCENTRIC in the given drawing Sheet and create the same in the CAD software.
- E.1. Draw the Front View and left side view of MACHINE VICE in the given drawing Sheet and create the same in the CAD software.
- F.1. Draw the Front View and left side view of Protected type flanged coupling in the given drawing Sheet and create the same in the CAD software.
- G.1. Draw the Front View and left side view of Screw jack in the given drawing Sheet and create the same in the CAD software.

Sample diagram

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 4302
Term	: IV
Course name	: Measurements and Metrology Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks							
COURSE	Instructions			Examination			
	Hours	Hours /		Marks			
Measurements	/	Semester	Internal	Autonomous	Total	Duration	
and Metrology	Week		Assessment	Examinations			
Practical							
	4	64	25	100*	100	3 Hrs.	

*Examinations will be conducted for 100 marks and it will be reduced to 75 marksfor result.

RATIONALE :

Diploma holders need to measure different form products after machining and while the products from maintenance operation. For this reason they should be familiar with different types of equipments with its accuracy and its precision. With the current trends adopted in the industry, it is imperative that the students should possess basic knowledge on measurement and metrology. so that this will help in their carrier.

OBJECTIVES:

> Familiarize about measuring techniques of Metrology instruments.

Select the range of measuring tools. Study of accuracy of instruments and calibration of instruments.

- > Obtain accurate measurements.
- > Determine the least count of measuring instruments.
- > Acquire knowledge about linear measurement.
- > Acquire knowledge about angular measurement.

- > Acquire knowledge about geometric measurements.
- > Study of Linear Measuring Instruments:Vernier

Caliper, Micrometer, Inside Micrometer, Vernier Height gauge and SlipGauge.

- Study of Angular Measuring Instruments–Universal Bevel Protractor,SineBar.
- > Study of Geometric measurement Gear tooth Vernier, Thread Vernier.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

СО	Details	BTL
3F4302 -CO1	Ability to understand different measuring	U
	techniques of Metrology instruments	
3F4302 -CO2	Ability to understand Least count of Measuring instruments and their calibration	U
3F4302 -CO3	Ability to estimate Linear measurements using devices	U
3F4302 -CO4	Ability to estimate angular measurements using devices	U
3F4302 -CO5	Ability to compare the given component using devices	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

Exercises

PART A: Linear Measurements.

1.Measure the dimensions of ground MS flat / cylindrical bush usingVernier Caliper compare with Digital / Dial Vernier Caliper.

2.Measure the diameter of a wire using micrometer and compare theresult with digital micrometer

3.Measure the thickness of ground MS plates using slip gauges

4.Measure the inside diameter of the bore of a bush cylindrical component using inside micrometer compare the result with digital micro meter.

5.Measure the height of gauge blocks or parallel bars using vernier height gauge.

6.Measure the speed lathe spindle using stroboscope.

PART B: Angular measurements / Comparators

- 1. Measure the angle of a V-block / Taper Shank of Drill / Dovetail usinguniversal bevel protractor.
- 2. Measure the angle of the machined surface using sine bar with slip gauges.
- 3. Measure the geometrical dimensions of V-Thread using thread Vernier gauge.
- 4. Measure the geometrical dimensions of spur gear.
- 5. Find out the measurement of given component and Compare with a standard component using mechanical comparator and slip gauge .
- 6. Compare the given component with a standard component using pneumatic comparator.

Part-A	
Procedure / Preparation	10
Observation / Dimensions	25
Finishing	10
	45 marks
Part-B	
Procedure / Preparation	10
Observation / Dimensions	25
Finishing	10
	45 marks
Viva-voce	10 marks
Total	100 Marks

Allocation of Marks

LIST OF EQUIPMENTS

- 1. Vernier Caliper 2 Nos.
- 2. Digital /dial Vernier Caliper. 2 Nos.
- 3. outside micrometer 2 Nos.
- 4. inside Micrometer 2 Nos
- 5. Digital Micrometer 2 Nos.
- 6. Slip gauges 2 Nos.
- 7. Universal bevel protractor. 2 Nos.
- 8. Sine bar 2 Nos.
- 9. Digital inside micrometer 2 Nos.
- 10. Surface plate 2 Nos.
- 11. Vernier height gauge 1No.
- 12. Thread Vernier 1 No.
- 13. Stroboscope. 2 Nos.
- 14. Gear tooth Vernier 2 Nos.
- 15. Mechanical comparator 2 Nos.
- 16. Dial indicator (0-10) 2 Nos.
- 17. Pneumatic comparator 1 No. Consumable - Sufficient quantity

Autonomous examination

Note:

- All the exercises in both sections have to be completed. Two exercises will be given for examination by selecting one exercise from PART A and one exercise from PART B.
- All the exercises should be given in the question paper and students are allowed to select by a lot.
- All regular students appearing for first attempt should submit record notebook for the examination.
- The external examiner should verify the availability of the facility for the batchstrength before commencement of practical examination.
- The external examiner should verify the working condition of machinery's /equipment before commencement of practical examination.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 4209
Term	: IV
Course Name	: Manufacturing Technology - II Practical

TEACHING AND SCHEME OF EXAMINATION

No of	weeks	per	semester:	16	weeks

COURSE	Instructions			Examination		
	Hours	Hours /		Marks		
Manufacturing	/	Semester	Internal	Autonomous	Total	Duratior
Technology - II	Week		Assessment	Examinations		
Practical						
	4	64	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marksfor result.

RATIONALE:

With the recent trends in manufacturing industries, especially with the inception of CNC machines, the diploma holders should possess hands on experience on conventional and CNC machines.the different types of experiments in this practical aimed to give confidence to the diploma holders when they are engaged in manufacturing industries.

OBJECTIVES:

- > Identify a milling machine and its parts
- > Identify a cylindrical grinder, surface grinder and tool and cutter grinder
- > Identify shaper, Slotter and its parts
- > Identify the tools and instruments used in milling.
- > Study the components of the CNC machine and setting.
- > Handle the different types of work holding devices
- > Machine a component using different machine tools.
- > Calculate the indexing for a work
- > Machine a gear using milling machine.

- > Machine a cutting tool using Tool and Cutter grinder.
- > Machine a plug gauge using Cylindrical grinding machine.
- > Machine components by shaping machine
- > Machine components by slotting machine.
- > Demo components by the CNC machines.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

CO	Details	BTL
3F4209 -CO1	Ability to performance the operation in shaping machine ,v-block,dovetail	R
3F4209 -CO2	Ability to performance the operation in slotting machine, groove cut	U
3F4209 -CO3	Ability to performance the operation in milling machine,spur gear,helical gear,round to hexagon,slot cutting	U
3F4209 -CO4	Ability to performance the operation in cylindrical grinding machine, tool and cutter grinder, surface grinder	R
3F4209-CO5	Ability to identify the usage of CNC turning machine and CNC milling machine	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

EXERCISES:

Raw Material: M.S. / C.I

1.Make 'V' Block using shaping machine

 Dimensions				
SI.No	Part Name	Actual	Obtained	
 		(******) 		

r age 120

2. Make dovetail using shaping machine

3. Make groove cut using slotting machine

4. Make round to hexagon in milling machine.

5. Make a spur gear using milling machine by differential indexing

6. Make a helical gear using milling machine

7. Make slot cut using milling machine.

8. Make Progressive type Plug gauge using Cylindrical Grinding machine

Dimensions					
Sl.No	Part Name	Actual	Obtained		
6					
_					

9. Make a turning tool using Tool and Cutter Grinder

10.Make plain surfaces (four surfaces) using surface Grinder

DEMO EXERCISES

1.Demo the component in the CNC turning centre

2.. Demo the component in the CNC milling centre

ALLOCATION OFMARKS

Procedure	10 Marks
Preparation of the Specimen	15 Marks
Setting and machining	30 Marks
Dimensions	25 Marks
Finishing	10 Marks
Viva voce	10 Marks
Total marks	100 Marks

LIST OF EQUIPMENTS

1.Vertical milling machine / Vertical attachment- 2 nos

2.Universal Milling Machine	- 2 Nos.
3.Surface Grinding Machine	- 1 No.
4.Cylindrical Grinding Machine	- 1 No
.5.Tool and Cutter Grinder	- 1 No.
6.Shaping Machine	- 2 Nos.
7.slotting machine	– 1 No
8.CNC milling machine – 1 no	
9.CNC turning machine – 1 no	
10.Tools and Measuring instruments	- Sufficient quantity.
11.Consumables	- Sufficient quantity.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 0006
Term	: IV
Course Name	: UNIVERSAL HUMAN VALUES

Topics

Unit	Name of the Topics
I	Course Introduction - Need, Basic Guidelines, Content and Process for
	Value Education
II	Understanding Harmony in the Human Being - Harmony in Myself
	Understanding Harmony in the Family and Society- Harmony in Human -
	Human Relationship
IV	Personality Development and Leadership
V	Stress Management

OBJECTIVES:

- 1. To help students distinguish between values and skills, and understand the need, basic guidelines, content and process of value education.
- 2. To help students initiate a process of dialog within themselves to know what they 'really want to be' in their life and profession
- 3. To help students understand the meaning of happiness and prosperity for a human being.
- 4. To understanding the moral values that ought to guide engineering profession or practice, resolving moral issues in engineering, and justifying the moral judgments in engineering.
- 5. To Understand the concept of values, meaning of stress, various causes of stress and to manage stress.
- 6. To help students distinguish between values and skills, and understand the need, basic guidelines, content and process of value education.
- 7. To help students initiate a process of dialog within themselves to know what they 'really want to be' in their life and profession

- 8. To help students understand the meaning of happiness and prosperity for a human being.
- 9. To understanding the moral values that ought to guide engineering profession or practice, resolving moral issues in engineering, and justifying the moral judgments in engineering.

10. To Understand the concept of values, meaning of stress, various causes of stress and to manage stress.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
	Ability to Understand the significance of value inputs in a	
3F 0006 -CO1	classroom and start applying them in their life and	U
	profession.	
	Ability to Distinguish between values and skills, happiness	
3F 0006 -CO2	and accumulation of physical facilities, the Self and the	R
	Body, Intention and Competence of an individual, etc.	
	Ability to Understand the value of harmonious	
3F 0006 -CO3	relationship based on trust and respect in their life	U
	and Profession.	
	Ability to To facilitate the students in applying	
3F 0006 -CO4	the understanding of harmony in existence in	U
	their profession and lead an ethical life.	
	Ability to To understand the individual and	
3F 0006 -CO5	organizational strategies to manage stress.	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

UNIT	Торіс	Hrs.
I	Course Introduction - Need, Basic Guidelines, Content	
	and Process for Value Education	
	Purpose and motivation for the course, recapitulation from	
	Universal Human Values-I - Self-Exploration – what is it? - Its	
	content and process; 'Natural Acceptance' and Experiential	
	Validation- as the process for self- exploration - Continuous	
	Happiness and Prosperity- A look at basic Human Aspirations -	
	Right understanding, Relationship and Physical Facility- the	
	basic requirements for fulfilment of aspirations of every human	
	being with their correct priority - Understanding Happiness and	
	Prosperity correctly- A critical appraisal of the current scenario	
	- Method to fulfill the above human aspirations: understanding	
	and living in harmony at various levels.	
II	Understanding Harmony in the Human Being - Harmony in Myself Understanding human being as a co-existence of the sentient	
	'i' and the material 'Body'- Understanding the needs of Self ('I')	
	and 'Body' - happiness and physical facility-Understanding the	
	Body as an instrument of 'I' (I being the doer, seer and	
	eniover)- Understanding the characteristics and activities of 'I'	
	and harmony in 'I'- Understanding the harmony of I with the	
	Body: Sanyam and Health; correct appraisal of Physical needs,	
	meaning of Prosperity in detail- Programs to ensure Sanyam	
	and Health.	
	Understanding Harmony in the Family and Society-	
	Harmony in Human - Human Relationship	
	Understanding values in human-human relationship; meaning	
	of Justice (nine universal values in relationships) and program	
	for its fulfillment to ensure mutual happiness; Trust and	
	Respect as the foundational values of relationship-	

	Understanding the meaning of Trust: Difference between	
	intention and competence. Understanding the meaning of	
	Respect Difference between respect and differentiation: the	
	other salient values in relationship-I Inderstanding the harmony	
	in the society (society being an extension of family):	
	Resolution Propagity footlooppoon (trust) and an existence	
	Resolution, Prospenty, reallessness (trust) and co- existence	
	as comprehensive Human Goals- Visualizing a Universal	
	harmonious order in society- Undivided Society, Universal	
	Order- from family to world family.	
IV	Personality Development and Leadership	
	Introduction- Personality- Character- Determinants of	
	Personality and Character Development - Measures to	
	Develop the Personality - Measures to Improve Character –	
	leadership - leadership traits Senses of engineering -Variety	
	of moral issues-Types of inquiries - Moral dilemma -Moral	
	autonomy -Moral development (theories)- Consensus and	
	controversy -Profession -Models of professional roles-	
	Responsibility - Theories about right action (Ethical theories)-	
	control -Self-interest - Customs-Religion -Self-respect -Case	
	study: Choice of the theory	
V	Stress Management	
	Characteristics of Values- Meaning- Sources of Value	
	Formation: Social institutions, Organisation, Colleagues,	
	Work Need of studying values, Need for Studying Values-	
	Stress -Meaning and Definition- Nature of Stress- Stress	
	Level and Its Impacts- Causes of Stress- Stress	
	Management- Individual Approaches- Organizational	
	Approaches.	
		1

ASSESSMENT:

• This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, etc.

will be used in evaluation.

Example:

- Assessment by faculty mentor: 10 marks
- Socially relevant project/Group Activities/Assignments: 15 marks
- Semester End Examination: 100 marks
- Question Pattern for End semester is 50 MCQ.
- Each question carries 2 points (10 MCQ's from Each Unit)
- The overall pass percentage is 40%.

Reference Books

- 1. Human Values, A.N. Tripathi, New Age Intl. Publishers, New Delhi, 2004.
- 2. The Story of Stuff (Book).
- 3. Small is Beautiful E. F Schumacher.
- 4. Slow is Beautiful Cecile Andrews
- 5. Economy of Permanence J C Kumarappa
- 6. Bharat Mein Angreji Raj PanditSunderlal
- 7. Rediscovering India by Dharampal
- 8. Hind Swaraj or Indian Home Rule by Mohandas K. Gandhi
- 9. India Wins Freedom Maulana Abdul Kalam Azad
- 10. Vivekananda Romain Rolland (English)
- 11. IES Master Institute of Engineering.

V - TERM

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 5303
Term	: V
Course Name	: DESIGN OF MACHINE ELEMENTS

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

COURSE	Instru	uctions	Examination			
	Hours /	Hours / Semester	Marks			
	Week		Internal Assessment	Autonomous Examinations	Total	Duration
Design Of Machine Elements	06	96	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Engineering Materials and Joints, Fasteners	18
II	Design of Shafts, Keys and Couplings	18
III	Design of Flat belts and V-belts	18
IV	Design of Bearings & Levers	18
V	Computer Aided Design (CAD) and Design of spur gears	17
	Test & Model Exam	7
	Total	96

RATIONALE:

The main objective of Machine Design is to create new and better machine components to improve the existing one. A mechanical engineer should have thorough knowledge of design of machine elements to avoid the failure of machinesor components.

OBJECTIVES:

- > Design of sleeve and cotter joint, knuckle joint and Welded joints.
- > Design eye bolts, cylinder cover studs.
- > Design shafts, keys and couplings required for power transmission.
- > Compare the different types of couplings.
- > Design flat and V-belt for power transmission.
- > Study the various types of bearings and their applications.
- Design journal bearings.
- > Design hand lever, foot lever and cranked lever.
- Role of CAD in design and analysis.
- Design Spur gears.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

UNIT	Course outcome	BTL
3F5301 -CO1	Ability to review the basic concept of engineering materials.	R
3F5301 -CO2	Ability to calculate the diameter of the shaft based on strength rigidity and design various types of coupling based on applications.	U
3F5301 -CO3	Ability to design parameters of various types of belts	А
3F5301 -CO4	Ability to evaluate parameters of various types of bearings and Design the levers.	U
3F5301 -CO5	Ability to understand the Computer Aided Design (CAD) and Design the spur gears.	А

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
	ENGINEERING MATERIALS, JOINTS AND FASTENERS	
	General Considerations in Machine Design. Engineering materials - Factors affecting selection of material-	l
	BIS designation of Ferrous materials - Preferred number -	l
	Factor of safety and allowable stress – Stresses: Tension,	l
	Compression, Shear, Bearing pressure Intensity, Crushing,	l
	bending and torsion - problem.Creep strain and Creep Curve-	
	Fatigue, S-N curve, Endurance Limit - Stress Concentration -	
I	Causes & Remedies. Theories of Elastic Failures – Principal	18
	normal stress theory, Maximum shear stress theory &	
	maximum distortion energy theory.	l
	Joints: Design of sleeve and cotter joint, knuckle joint and	l
	weldedjoint.	l
	Fasteners: Design of bolted joints - eye bolts - cylinder	
	cover with bolts, studs - pins.	l
	DESIGN OF SHAFTS, COUPLINGS AND KEYS	
	Shafts: Design of shafts subjected to - twisting moment -	10
11	bending moment – combined twisting and bending moments –	10
	fluctuating loads – design of shafts based on rigidity.	
	Keys: Types of keys - design of sunk keys only - Effect	
	of keywaysonshaft-problems.	
	Couplings: Requirements of good couplings - types - design	
	of - rigid protected type flange couplings - marine couplings	l
	 pin type flexiblecoupling (Description only). 	l
	DESIGN OF FLAT BELTS AND V-BELTS	18
	Flat Belts: Types of belts - materials for belt types of belt	l
	drives - Speed ratio - effect of slip - length of flat belts -	l
	Tension Ratio T1/T2= $e\mu\theta$ - centrifugal tension - power	1
	transmitted - condition for maximum power - transmission -	l

	Initial Tension - problems - design procedure of flat belts -
	design of flat belt based on manufacturer's data only –
	problems.
	V-Belts: V-belt drive - comparison with flat belt drive -
	designation of V holts longth of holt - nower transmitted
	Design of V belt using menufacturer's data only. Broblem
	Design of V-beit using manufacturer's data only – Problem.
	Design of Bearings AND Levers
	Bearings: Classifications of bearings – sliding contact and
	rolling contact bearings - radial and thrust bearings - roller
	bearing - types - Designation of ball bearings - materials used
	for bearings - journal bearings - heat generated - heat
IV	dissipated - cooling oil requirement – problems - design of 18
	journal bearings – Problems. (Design based on approved data
	books only.)
	Levers: Types of levers – applications - mechanical
	advantage- leverage - displacement ratio - design of-hand
	lever-foot lever- cranked lever - problems.
	Computer Aided Design (CAD) and Design of spur gear:
	CAD – Roles of CAD in design – Development and uses -
V	Applications – Advantages – Product cycle – Design process:
	Pahl and Beitz Model – Design of spur gear
	Spur gears: Gear drives - merits and demerits over belt drive –
	Classification of gears - gear materials - sour gear terminology -
	design of anur goors based on Lowis ? Duskinghom equation
	design of spur gears based on Lewis & Buckingham equation -
	Problems – speed reducer – types –(Approved data books only)

Reference Books

- 1. Machine Design, Pandya & Shah, 20 Edn. 2015, Charotar Publishing House.
- 2. Machine Design, T. V. Sundararajamoorthy & N. Shanmugam, Revised Edition-2018–Anuradha Publications.
- 3. Design Data Book by PSG College of Technology, DPV Printers.

- 4. A text book of Machine Design, R.S. Khurmi & J.K.Gupta, 2020, Eurosia Publishing House Pvt. Limited.
- 5. Machine Design, Bandari, 2020
- 6. Theory and Problems of Machine Design, Holowenko, Laughlin, Schaum's outline series.
- 7. R.Radhakrishnan, and S.Subramanian, "CAD/CAM/CIM", New Age International Pvt Limited

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 5210
Term	: V
Course Name	: THERMAL ENGINEERING - II

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Inst	ructions		Examination		
COURSE	Hours	Hours	Marks			Duration
	/Week	/Semester	Internal	Autonomous	Total	Duration
			Assessment	Examinations		
THERMAL						
ENGINEERING	5	80	25		100	3 Hrs.
- 11				100*		

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Formation and properties of steam & thermodynamic processes	15
	of vapour	
II	Steam boilers and performance of boiler	15
III	Thermal power plant and steam turbines and condensers	15
IV	Conventional sources of energy and nuclear power plant	13
V	Air compressors and gas turbines	15
	Test & Model Exam	7
	Total	80

RATIONALE:

A diploma holder may get employment in power plants and other industries involving boilers and application of steam. With this back round ,the course is designed for the students to learn the properties of steam, steam cycle, Performance of boilers, energy management ,air compressors and steam and gas turbine.

OBJECTIVES:

- > Define various types of steam.
- > Explain the working of Boiler.
- > Compare various types of Boilers.
- > Familiarize boiler mounting and accessories.
- > Describe various circuits used in the thermal power plant.
- > Explain working of steam turbine and condensers.
- Compare conventional energy sources with Non-Conventional Sources of energy.
- > Explain working of nuclear power plant.
- > Compare the different types of refrigeration & air conditioning system.
- > Compare the properties and applications of various refrigerants.
- Describe the equipment used for air conditioning.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
3F 5210 -CO1	Ability to explain the formation and properties of steam.	Α
3F 5210 -CO2	Ability to classify different types of steam boilers, boiler mountings and their accessories, Indian Boiler Act.	U
3F 5210 -CO3	Ability to Analyze the steam condensers, working of thermal power plant and classification of steam turbine	Α
3F 5210 -CO4	Ability to Describe the working principle and basic components of the nuclear power plant and the economic and safety principles involved with it.	R
3F 5210 -CO5	Ability to estimate power for air compressor and compare gas turbines.	Α

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
I	FORMATION AND PROPERTIES OF STEAM &	15
	THERMODYNAMIC PROCESSES OF VAPOUR	
	FORMATION AND PROPERTIES OF STEAM Steam-Properties- formation of steam- saturation	
	temperature- enthalpy of water-enthalpy of	
	evaporation- conditions of steam - wet, dry and	
	superheated steam -dryness fraction -enthalpy of wet,	
	dry and superheated steam -advantages of superheated	
	steam –Property diagrams – p-v diagram - T-H	
	diagram – T-V diagram – T-S diagram -phase	
	diagram-H-S diagram – P-H diagram –critical	
	conditions of water-specific volume of water and steam	
	- density of steam - external work done during	
	evaporation - internal latent heat - internal energy of	
	steam - entropy of water and steam - steam tables-	
	Mollier chart – problems.	
	THERMODYNAMIC PROCESSES OF VAPOUR	
	Determination of dryness fraction of steam - bucket	
	calorimeter - combined separating and throttling	
	calorimeters- problems.	
	Expansion processes of steam - constant volume,	
	constant pressure, constant temperature, hyperbolic,	
	polytrophic, isentropic and throttling processes -	
	problems.	

П	STEAM BOILERS AND PERFORMANCE	15
	OF BOILERSTEAM BOILERS	
	Introduction -Classification of boilers – comparison of fire	
	tube and water tube boilers- high pressure boilers -	
	advantages of high pressure boilers - Lamont and BHEL	
	high pressure boilers - boiler mountings and function-	
	construction and working - boiler accessories and	
	function-construction and working - comparison of	
	mountings and accessories - feed water treatment -	
	internal and external treatments - starting boiler from cold	
	condition – safety precautions in boiler operation – clauses	
	of Indian boiler act.	
	PERFORMANCE OF BOILER Evaporation rate- actual, equivalent and factor of	
	evaporation – boiler efficiency – factors influencing	
	boiler efficiency - boiler power - problems – boiler plant -	
	efficiency of economizer and super heater - problems	
	 boiler trial – heat losses in a boiler- heat balance 	
	sheet – problems.	
III	THERMAL POWER PLANT AND STEAM TURBINES AND	
	CONDENSERS	
	THERMAL POWER PLANT AND STEAM TURBINES	
	Selection of site for thermal power plant -Layout of thermal	
	power plant – fuel and ash circuit – water and steam circuit –	
	air and flue gas circuit - cooling water circuit - merits and	
	demerits of thermal power plant — air pollution by thermal	
	power plants - pollutants, effects and control- cyclone	15
	separator - wet scrubber - electrostatic precipitator -	
	control of No2 and SO2. fiudised bed combustion- thermal	
	and noise pollution.Basic steam power cycles - Carnot,	
	Rankine and modified Rankine cycles.classification of steam	
	turbine-Impulse and reaction turbines- Difference - necessity	

	of compounding – Methods of compounding– special turbines.	
	STEAM CONDENSERS	
	Elements of condensing plant – classification of condensers	
	- jet condenser - types - surface condensers - types -	
	comparison of jet and surface condensers.	
IV	CONVENTIONAL SOURCES OF ENERGY AND NUCLEAR	
	POWER PLANT	
	Nuclear fuels -fissile and fertile fuels - Nuclear fission and	
	fusion- chain reaction - radio activity - layout of nuclear	
	power plant - merits and demerits - Nuclear reactors -	
	Components-Reactor Core moderators - control rods -	
	coolant - reflectors - biological shield-Reactor Vessels-	
	Classification of Reactor- pressurized water reactor - boiling	
	water reactor - Candu type reactor - fast breeder reactor -	13
	effect of nuclear radiation - Fuel Cycle -Site selection -	
	Safety-Floating Nuclear Power Plants- Uranium Enrichment –	
	Methods-disposal of nuclear wastes- comparison of nuclear	
	power plants with thermal power plants- Nuclear Power Plant	
	in India. Conventional sources of energy - layout of hydel	
	and diesel power plants – merits and demerits	
V	AIR COMPRESSORS AND GAS TURBINES	
	AIR COMPRESSORS	
	Air Compressors-uses of compressed air - classifications of	
	Air compressor-reciprocating compressor-single stage	
	reciprocating compressor- compression processes - power	
	required to drive the compressor (Neglecting clearance	
	Volume)- clearance volume and its effects volumetric	15
	efficiency -power required to drive the compressor with	
	clearance volume - problems -multi stage compression -	
	merits and demerits - work input - ratio of cylinder diameters	
	for minimum work input.rotary compressors - Roots blower -	
	vane blowers - centrifugal and axial flow air compressors	
		1

GAS TURBINES	
Gas turbines -uses - classifications - merits and demerits	
of gas turbines -constant pressure combustion gas turbine	
- gas turbine with - intercooler -reheater - regenerator -	
effects - closed cycle gas turbines - merits and demerits	
of open and closed cycle gas turbines	
Jet propulsion -turbojet engines- merits and demerits	
 turbo propeller engines – merits and demerits - 	
ramjet-merits and demerits -Rocket.	

Reference Books

1. Thermal Engg, R.K. Rajput , ,10 th Edition,2018, Laxmi publications Pvt Ltd , New Delhi.

2. Applied Thermodynamics, P.K. Nag, ,2017, TATA Mcgraw – Hill Publishing Company, New Delhi.

- 3. Thermal Engineering, R.S. Khurmi and J.K. Gupta, 18th Edition, 2020
- ,S.Chand &Co,NewDelhi

4. Thermal Engineering ,P.L Ballaney , 24th Edition ,Khanna Publishers,New Delhi.

- 5. Thermal Engineering ,B.K. Sarkar , 2017 , Dhanpat Rai & Sons New Delhi .
- 6. Applied Thermodynamics, Domkundwar and C.PKothandaraman,

2016, Edition Khanna publishers, New Delhi.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F5304 -1
Term	: V
Course Name	: COMPUTER INTEGRATED MANUFACTURING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

COURSE	Instructions		Examination			
	Hours /	Hours /	Marks			Duration
	Week	Semester	Internal Assessment	Autonomous Examinations	Total	
Computer Integrated Manufacturing	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
Ι	Computer Aided Design	15
I	Computer Aided Manufacturing	14
II	CNC programming	16
IV	FMS, AGV, AS/RS, Robotics	14
V	Advanced concepts of CIM	14
Test & Model Exam		7
	Total	80

RATIONALE:

As per the latest requirements in the Industries this enables to learn the various concepts of Computer Aided Design and Manufacturing. They are able

to operate CNC machines and write part program. They are able to understand the advanced concepts adopted in automated industries.

OBJECTIVES:

- > Acquire knowledge in the field of Computer aided Design
- > Explain the various concepts of Computer Aided manufacturing
- > Write part program for manufacturing components in CNC machines
- Explain the concepts of automatic material handling and storage systems androbotics
- > Explain the advanced concepts of CIM.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

Course outcome		
3F5304-1-CO1	Ability to explain the geometric modeling, uses of standard for GKS, open GL and the steps involved in FEA.	U
3F5304-1-CO2	Ability to describe the concept of manufacturing with computer assistance in process planning, different aspects of planning system and control systems.	U
3F5304-1-CO3	Ability to explain the method of CNC programming with international codes and principle of latest manufacturing techniques like RPT & RT.	U
3F5304-1-CO4	Ability to write the flexible manufacturing system components, Automated Guided Vehicle System, AS/RS and Robot anatomy.	A
3F5304-1-CO5	Ability to discuss the product cycle design process, sequential and concurrent engineering.	U
Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's re revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
	Computer Aided Design	
	Computer Aided Design: Introduction – definition – Shigley's	
	design process - CAD activities - benefits of CAD - CAD	
	software packages - point plotting, drawing of lines,	
	Bresenham's circle algorithm, Transformations: 2D & 3D	
	transformations – translation, scaling, rotation and	
I	concatenation. Geometric modelling: Techniques - Wire	15
	frame Modelling – applications – advantages and	
	disadvantages. Surface modelling - types of surfaces -	
	applications - advantages and disadvantages - Solid	
	modelling - entities - advantages and disadvantages -	
	Boolean operations - Boundary representation -	
	Constructive Solid Geometry – Comparison.	
	Graphics standard: Definition- Need - GKS	
	-IGES - DXF. Finite Element Analysis:Introduction -	
	Development - Basic steps – Advantages.	
II	Computer Aided Manufacturing	14
	CAM – Definition - functions of CAM – benefits of CAM.	
	Introduction of CIM- concept of CIM - evolution of CIM - CIM	
	wheel – Benefits – integrated CAD/CAM. Group	
	technology: Part families - Parts classification and coding -	
	Coding structure - Opitz system, MICLASS system and	
	CODE System.	
	Process Planning: Introduction – Computer Assisted	
	Process Planning ,(CAPP) – Types of CAPP - Variant type	
	,Generative type – advantages of CAPP. Production	

	Planning and Control (PPC): Definition - objectives -	
	Computer Integrated Production management system -	
	Master Production Schedule (MPS) - Capacity Planning -	
	Materials Requirement Planning(MRP) - Manufacturing	
	Resources Planning(MRP-II) – Shop Floor Control system	
	(SFC) - Just In Time manufacturing philosophy (JIT) -	
	Introduction to Enterprise Resources Planning (ERP).	
	CNC Programming	16
	NC in CAM, tooling for CNC – ISO designation for tooling –	
	CNC operating system. Programming for CNC machining -	
	part program - Manual part programming - coordinate system	
	- Datum points: machine zero, work zero, tool zero -	
	reference points - NC dimensioning - G codes and M codes	
	- linear interpolation and circular interpolation - CNC	
	program procedure - sub-program - canned cycles - stock	
	removal - thread cutting- mirroring - drilling cycle -	
	pocketing. Rapid prototyping: Classification -subtractive -	
	additive - advantages and applications -materials -	
	Virtual machining.	
1V	FMS, AGV, AS/RS, Robotics	14
	FMS: Introduction - FMS components - FMS layouts -	
	Types of FMS: Flexible Manufacturing Cell (FMC) – Flexible	
	Turning Cell (FTC) – Flexible Transfer Line (FTL) – Flexible	
	Machining System (EMS) - benefits of EMS- introduction to	
	intelligent manufacturing system. Material handling in CIM	
	intelligent manufacturing system. Material handling in CIM environment: Types – AGV: Introduction – AGV- working	
	intelligent manufacturing system. Material handling in CIM environment: Types – AGV: Introduction – AGV- working principle – types– benefits. AS/RS – working principle –	
	intelligent manufacturing system. Material handling in CIM environment: Types – AGV: Introduction – AGV- working principle – types– benefits. AS/RS – working principle – types – benefits. Robotics: Definition – robot configurations	
	intelligent manufacturing system. Material handling in CIM environment: Types – AGV: Introduction – AGV- working principle – types– benefits. AS/RS – working principle – types – benefits. Robotics: Definition – robot configurations – basic robot motion – robot programming method – robotic	
	intelligent manufacturing system. Material handling in CIM environment: Types – AGV: Introduction – AGV- working principle – types– benefits. AS/RS – working principle – types – benefits. Robotics: Definition – robot configurations – basic robot motion – robot programming method – robotic sensors – end effectors – mechanical grippers – vacuum	
	intelligent manufacturing system. Material handling in CIM environment: Types – AGV: Introduction – AGV- working principle – types– benefits. AS/RS – working principle – types – benefits. Robotics: Definition – robot configurations – basic robot motion – robot programming method – robotic sensors – end effectors – mechanical grippers – vacuum grippers – robot programming concepts - Industrial	

	and loading - welding - spray coating -assembly and	
	inspection.	
V	Advanced Concepts Of CIM	14
	Concurrent Engineering: Definition- Sequential Vs	
	Concurrent engineering- need of CE - benefits of CE.	
	Quality Function Deployment (QFD): Definition - House of	
	Quality (HOQ) – advantages – disadvantages. Steps in	
	Failure Modes and Effects Analysis (FMEA) -Value	
	Engineering (VE) -types of values - identification of poor	
	value areas - techniques - benefits. Guide lines of Design	
	for Manufacture and Assembly (DFMA). Product	
	Development Cycle: Product Life Cycle - New product	
	development processes. Augmented Reality (AR) -	
	Introduction - concept – Applications.	

Reference Books

- 1. CAD / CAM / CIM R.RadhaKrishnan, S.Subramanian New Age International Pvt, Ltd,4 th edition 2018.
- 2. CAD / CAM Mikell P.Groover, Emory Zimmers, Jr.Premtice Hall of India Pvt., Ltd
- 3. NC programming S.K.Sinha Galgotia Publications Pvt. Ltd,9 th edition 2011.
- 4. CAD/CAM principles and applications, Dr.P.N.Rao Tata Mc Graw Hill publishing companyltd
- 5. CAD / CAM Ibrahim Zeid Mastering Tata McGraw- Hill Publishing company Ltd,New Delhi
- 6. Computer control of manufacturing systems yoram koren McGraw Hill Book, new edition 2009.
- 7. Dr.Sadhu Singh, "Computer Aided Design and

Manufacturing,", KhannaPublishers, NewDelhi,

Second Edition, 2000.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Code	: 3F 5304-2
Term	: V
Course	: AUTOMOBILE ENGINEERING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instru	ictions	Examination				
COURSE	Hours /	Hours /	Mar	ks		Duration	
	Week	Semester	Internal	Autonomous	Total	Duration	
			Assessment	Examinations	Total		
Automobile Engineering	5	80	25	100*	100	3 Hrs.	

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
i	Automotive engines parts, engine lubrication and cooling system	14
ii	Fuel feed system, combustion chambers alternate fuel & vehicles andpollution control	14
iii	Transmission and power trains	15
iv	Front axle, steering system, suspension system, braking system, wheelsand tire	15
V	Auto electrical and autotronics	15
	Test & model exam	7
	Total	80

RATIONALE:

These days, automobiles have become a necessity instead of luxury. At present, there is exponential development in automobile industry with regard to

pollution control. The diploma holders in Mechanical Engineering are required to supervise the manufacture, repair and maintenance of vehicles. Hence, knowledge and skills are to be imparted to them regarding automobile industry as a whole.

OBJECTIVES:

- Explain about the constructional details of an IC engine including cooling andlubrication system.
- Describe fuel feed systems with all devices involved in it (Both for petrol and dieselengines).
- Explain the construction and functional features of the power transmission systems and various parts involved in it.
- > Explain the functions of different types of steering and brake systems.
- > Familiarize electrical and electronic equipment used in automobile.
- > Describe the different types of chassis and their functions.
- > Appreciate the techniques for automobile pollution control.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

Course outcome		BTL
3F 5304-2 -CO1	Ability to summarize the constructional details of an IC engine including cooling and lubrication system.	R
3F 5304-2 -CO2	Ability to explain the fuel feed systems with all devices involved in it (Both for petrol and diesel engines) and techniques for automobile pollution control.	U
3F 5304-2 -CO3	Ability to describe the construction and functional features of the power transmission systems and various parts involved in it.	U
3F 5304-2 -CO4	Ability to compare the different types of chassis, steering and brake systems and their functions.	U
3F 5304-2 -CO5	Ability to identify the starting system, generator and advanced auxiliary systems.	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the	Hours
l	Automotive Engines Parts, Engine Lubrication And	
	Cooling System	
	Automotive engine parts	
	Principal mechanism and parts of an engine—cylinder	
	head, block, crank case, sump, liner, piston, piston rings,	11
	connecting rod, crank shaft, cam shaft, timing gears, valves and	14
	valve operating mechanism (L-head, I head and OHC only) Air	
	cleaner-Intake and Exhaust manifold.	
	Engine Iubrication AND cooling	
	Friction in engines—purpose of lubrication—splash—pressure—	
	semi pressurewet sump and dry sump lubrication—oil	
	filters-crank case ventilation-Troubles, causes and	
	remedies.Necessity for cooling-effects of inadequate cooling	
	and overheating of engine parts—-forced circulation system—	
	pressure sealed cooling-radiator-water pump-thermostat-	
	antifreeze solutions—troubles, causes and remedies.	
	Fuels	
	volatility characteristic-vapour lock tendency-crank case oil	
	dilution—gum formation—knocking—pre-ignition—detonation—	
	octane requirement factors—gasoline additives—smoke	
	formation—diesel knock—detonation.	
II	Fuel Feed System, Alternate Fuel & Vehicles And Pollution	
	Control	
	FUEL FEED SYSTEM	

	S.I. engine fuel feed pump combustion chamber—Air fuel ratio	
	C.I. Engine diesel combustion chamber-open, swirl, and pre-	
	combustion chambers-Types of injection system-Jerk type	
	fuel injection pump— Distributor type fuel injection DTSI – VTI –	
	CCVTI - PGMFI - MPFI system. Governors-mechanical and	
	pneumatic governors—Description of super charging and Turbo	
	charging—Troubles, causes and remedies of petrol and diesel	
	fuel system.	14
	ALTERNATE FUEL	
	Alternate fuels—Brief description of alternate fuels—	
	alcohol— natural gas—LPG—hydrogen—vegetable oil and	
	biogas-Operation with Hydrogen- Fuel Cells- Fuels Cell Vehicle-	
	Electric Vehicle-Drive System.	
	POLLUTION CONTROL	
	Pollution control—Air pollution—Emission from	
	automobiles— Nitrogen oxides—Soot—carbon monoxide—	
	Hydrocarbons—aldehydes— other exhaust components—	
	Emission regulation for cars—pollution control techniques—	
	noise pollution-vehicle noise-noise specifications-Effects of	
	noise on human beings—Noise reduction.	
III	TRANSMISSION AND POWER TRAINSCLUTCH AND	15
	GEARBOX	
	General arrangement of power transmission system—Four	
	wheel drive—Forces acting on a motor vehicle—	
	Air, Rollingand gradient Bresistance-tractive effort-clutch-	
	Necessity for a clutch—Types-single plate, Diaphragm, multi	
	plate wet clutch, fluid coupling—clutch linkages— fault diagnosis	
	and remedies.	
	Gear box—Necessity for a gear box—Types of gear box—sliding	
	mesh gear box—Constant mesh gear box—synchromesh device	
	- Epi-cyclic gear trains-Gear box troubles, causes and	
	remedies.	

	FINAL DRIVE	
	Propeller shaft and universal joints—Function of the propeller	
	shaft—Universal joint—constant velocity joint (Cross type	
	only)—Telescopic propeller shaft—Hotch kiss drive—Torque	
	tube drive.	
	Final drive—Functions and applications—Differential—	
	purpose— construction and operation—purpose and brief	
	description of double reduction, Non-slip, self-locking	
	differential—Fault diagnosis and remedies.	
	Axles—Types of axles and applications—Floating axles—	
	Semi-floating—Three quarter floating and full floating—rear hub	
	construction— bearing arrangements.	
IV	Front Axle, Steering System, Suspension System, Braking	15
	System, Wheels And Tire	
	FRONT AXLE, STEERING SYSTEM Front axle—stub axle and wheel mountings—Elliot, Reverse	
	Elliot and lemoine types-steering system requirements and	
	functions—Ackerman principle—steering system components—	
	steering gears—Rack and pinion, cam and roller, screw and	
	lever, recirculating ball type—power steering— wheel	
	alignment-king pin inclination-camber-castor-Toe in and	
	Toe out-steering troubles-possible causes and remedies	
	Power Steering.	
	SUSPENSION SYSTEM	
	Suspension system—Function—Front independent	
	suspension—Rear independent suspension—stabilizer rod—	
	torsion bar—shock absorber—purpose—Telescopic type—	
	construction and working—Anti roll bar—leaf spring	
	suspension—Air suspension (Brief description only)—	
	suspension system fault diagnosis and remedies.	
	BRAKING SYSTEM	
	Brake system—Need—Classification of brakes—drum brake—	

ſ		Disc brake—mode of operations—mechanical, hydraulic,	
		pneumatic—Air assisted hydraulic brake—servo action and self	
		energisation—brake Adjustment —brake fault diagnosis and	
		remedies.	
		WHEELS	
		Wheels-types-Spoke, disc and cast wheels-tires-Tubeless	
		tirepurpose and construction of tirebias ply and radial ply	
		tire— tire maintenance—Effect of over and under inflation.	
-	V	Auto Electricals And Autotronics	15
		Auto Electricals (motor, generator, sparkplug, lightings and	
		power window) Distributor—Spark plug—cold and hot plugs.	
		Starter motor and the cranking circuit—Types of starter motor—	
		Series, shunt and compound motors-Starter drives-Bendix	
		drive—Over running clutch—solenoid operated starters.	
		Generator and the charging circuit—D.C. generator—	
		A.C Generator [Alternator]—current regulators—Voltage	
		regulator and cut-outrelay -cable colors.	
		Lighting and signaling circuit: Lighting-sealed-beam	
		head lights— composite head lights—Halogen sealed Beam	
		Head lights—Dimmer switches—Brake lights—Directional [Turn]	
		signals—courtesy lights. Windshield wipers—Horns—Cruise	
		control—Power windows— Power seats—Electric power door	
		locks—Electronic stability Program.	
		ADVANCE DEVELOPMENT AND EMISSION STANDARDS	
		Developments in Automobile Vehicles-Variable valve	
		Timing-Electronics in Automobiles-Engine Management System-	
		Control System Components-Sensors- Sensor Types-Electronic	
		Control Unit-Actuators- Control System-Electronically Controlled	
		Carburettor-Gasoline Injection System.	
		Electronic Diesel Control-Pilot Injection-Unit Injector-	
		Common Rail Fuel Injection System. Automatic Transmission-	
		Electronic Transmission Control-Electronic Automatic Gear Box-	

Air Bags--Drive By Wire-ABS- Sensotronic Braking Control-Wind Screen-Lighting System-Alloy Wheels-Tubeless Tires. Awareness on Computerized Engine test Rig-Awareness on Noise Vibration, Emission and Harshness in Automobile. EMISSION STANDARDS: Eurol, II, III and IV norms, BharatStage II, III, Vand VI norms.

Reference books:

- 1.Motor manuals volume I to IV a.w.judge, chapman & hall ltd., 37, Essex st.,w.c.2.
- 2. Automotive mechanics William h.crouse, Tata McGraw hill publishing companyltd. Newdelhi.
- 3. Motor vehicles, Newton and steeds.new edition, 2000
- 4. Practical automobile engineering staton abbey, odhams press ltd., longacre,London, U.K.
- 5. Automobile engineering theory and practice k.k.ramalingam scitech publications, chennai.
- 6. Automobile electrical and electronic systems, james.d.halderman, prenticehall,Englewood liffs, New Jersey.

Course Name	: DIPLOMA IN MECHANICAL ENGINEERING
Code	: 3E 5304 -3
Term	: V
Course	: Green Energy and Energy Conservation

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

COURSE	OURSE Instructions Examination					
Green	Hours	Hours /	Marks			Duration
Energy and	/	Semester	Internal	Autonomous	Total	Duration
Energy	Week		Assessment	Examinations		
Conservation						
	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
Ι	Fundamentals of Energy, Geothermal energy, Wind energy	15
II	Bio mass energy, Solar Energy	15
III	Photovotaic (PV)	15
IV	PV Technologies, Applications	15
V	Energy conservation	13
Test And Rev	7	
	80	

RATIONALE:

There is an ever increasing demand for energy in spite of the rising prices ofoil & other fossil fuel / depletion of fossil fuels. Energy demand, in particular electricity production has resulted in creation of fossil fuel based power plants that let out substantial greenhouse gas / carbon emission into the atmosphere

causing climate change and global warming. We have various forms of renewable energy sourcesviz., Wind, Solar, Biomass, Biogas, etc. Municipal and Industrial wastes could also be useful sources of energy while ensuring safe disposal. This subject is introduced to learn about the major renewable energy sources and more focus on the PV module solar energy. The government act and guidelines are discussed for the benefit of the Diploma Engineers.

OBJECTIVES:

- > Study about the fundamentals of Energy.
- Study of construction and principle of Wind energy, Solar energy,Geo thermaland Bio energy.
- > Understand the solar energy.
- > Understand the PV design and its components.
- > Study the energy conservation process.
- > Understand the Government Policies and Acts.
- > Study the TEDA projects in Tamil Nadu.

Course Outcome

On successful completion of the cour se, the students will be able to attain below Course Outcome (CO):

UNIT	Course outcome				
3F 5304 –3 –CO-1	Ability to Understand the fundamentals of Energy.	U			
3F 5304 –3 –CO-2	Ability to Understand the construction and principle of solar energy and Bio energy.				
3F 5304 –3 –CO-3	Ability to Understand the PV design and its components.	U			
3F 5304 –3 –CO-4	Ability to Understand the PV Technologies and its applications.	U			
3F 5304 –3 –CO-5	Ability to Knowledge the energy conservation and				
	energy management				

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

UNIT	Name of the Topics	Hrs.
l	Fundamentals of Energy, Geothermal energy, Wind	15
	energy Energy: Introduction – Energy need and trends -	
	Forms of Energy - First Law of Thermodynamics - Second	
	Law of Thermodynamics energy requirement and supply -	
	Fossil fuels and climate changes - need of renewable	
	energy sources – Current renewable energy uses –	
	Renewable energy policies in India.	
	Geothermal energy: Introduction – Essential	
	characteristic – Sources – Power Plants – Single flash	
	power plant – double flash power plant – Flow diagram	
	and principle only.	
	Wind energy: Introduction – energy conversion – site	
	selection considerations - Components of wind energy	
	conversion system – Classification. Wind mill: Horizontal	
	axis machines - Vertical axis machines – working principle,	
	advantages and disadvantages. Schemes for electric	
	generation.	
	Bio mass energy, Solar Energy	15
	Bio mass energy: Introduction – conversion technologies:	
	Wet processes – dry processes. Bio gas generation – factors	
	affecting the bio gas generation - classification of bio gas	
	plants – Bio gas plant – construction - advantages and	
	disadvantages. Materials used for bio gas generation -	
	factors to be considered for the selection of site.	
	Solar Energy: Introduction – Sun's energy: advantages –	
	conversion challenges- The Sun-Earth movement - Solar	
	radiation- Different angles - optimal angle for fixed collector,	
	in summer andwinter. Sun tracking - measuring instruments	
	of solar radiation – methods to estimate solar radiation.	

	Photovotaic (PV)	15
	Photovotaic (PV): Semiconductors as solar cell – types of unit	
	cells- electronic arrangement of silicon atom - intrinsic	
	semiconductor- extrinsic semiconductor - Description only. P-	
	N junction diode - forward bias - reverse bias. Solar cell -	
	characteristics - descriptionof short circuit current, open circuit	
	voltage, fill factor and efficiency- losses in solar cells.	
	Growth of solar PV and silicon (Si) requirement - production	
	of metallurgical grade (MGS) – production of electronic grade	
	(EGS)Production of Si wafers: ingot making	
	- monocrystalline - multicrystalline - wafer dicing. Si sheets.	
	Solar grade silicon (SoG)refining processes – Si usage in	
	Solar PV. Process flow of commercial Si cell technology -	
	Description of saw damage removal and surface texturing,	
	diffusion process, thin-film layers for anti reflection coating and	
	surface passivation, metal contacts and their deposition.	
IV	PV Technologies, Applications	15
	PV Technologies: Thin film Technologies - materials for thin	
	film technologies - Thin film deposition techniques: Physical	
	vapour deposition – Evaporation – Sputtering.	
	Chemical vapour deposition- Low pressure - plasma	
	enhanced. Advantages of thin film Si solar cell	
	technologies. Solar cell structures – substrate arrangement	
	- superstrate arrangement. Solar PV module: series and	
	parallel connections of cells - mismatch in cell / module-	
	Design and structure of PV module.	
	Batteries for PV systems - factors affecting battery	
	performance – DC to DC converters – Charge controllers	
	- DC to AC converter(inverter) (Description only).	
	Applications: Flat plate collector - concentrating solar	
	collectors - solar pond - solar water heating - space	

	heating and cooling - solar pumping - solar cooking -	
	solar green house. principle and applications only.	
V	Energy conservation	13
	Energy conservation act 2001 - Power of state government to	
	facilitate and enforce efficient use of energy and its	
	conservation - Finance, Accounts and Audit of bureau -	
	Penalties and Adjudication - Appellate tribunal for energy	
	conservation – Energy Conservation Guidelines for	
	Industries by BEE, Govt of India - Guide lines - heating,	
	cooling and heat transfer - waste recovery and usage -	
	conversion of heat to electricity - Prevention of energy loss	
	due to heat radiation and electric resistance - Industry	
	energy management system. Net-metering policies – Tamil	
	Nadu Energy Development Agencies – Projects in Tami	
	Nadu: Solar energy, Bio energy and Wind energy – Tamil	
	Nadu Solar policy 2019.	

Reference Books

- 1. Non Conventional Energy Sources, G.D.Rai, Khanna Publishers.
- Non Conventional Energy Sources and Utilisation, R.K.Rajput,S.Chand &Company Ltd.new edition -2012
- 3. Renewable Energy, Stephen Peake, Oxford press.4 th edition2017
- 4. Non Conventional Energy Resources, B.H.Khan, Tata Mc Graw Hill.2009
- 5. Industrial energyconservation- D. A. Ray- Pergaman Press
- 6. Energy resource management, Kirpal Singh Jogi, Sarup and sons.
- 7. Solar Photovltaics, Chetan Singh Solanki, PHI Learning Pvt. Ltd.
- 8. Renewable Energy Engineering and Technology, V V N Kishore, TERI.2010
- Principles of Solar Engineering, D.Yogi Goswami, Frank Kreith, Jan F.Kreider, Taylor & Francis.2 nd edition 2000
- 10. Energy conservation act 2001, Government of India.
- 11. Energy Conservation Guidelines for Industries, Bureau of energy

Efficiency, Ministry of Power, Government of India.2017.

- 12. Tamil Nadu Solar policy 2019
- 13) https://teda.in/achievements/solar-energy-4/
- 14) https://teda.in/achievements/bio-energy-2/
- 15) https://teda.in/achievements/wind-energy-2/

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Code	: 3F 5305
Term	: V
Course	: SOLID MODELLING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16					6 we	eks	
COURSE	Instructions		Examination				
				Marks			
Solid	Hours	Hours /	Internal	Autonomous		Du	ration
Modelling	/Week	Semester	Assessment	Examinations	Total		
Practical	4	64	25	100*	100	3	Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

A Mechanical Engineering Diploma Engineer is expected to possess a thorough understanding of drawing, which includes clear visualization and proficiency in reading and interpreting a wide variety of production drawing. The market driven economy demands frequent changes in product design to suit the customer requirements. The introduction of this subject is to provide hands on experience in sketching and modeling of the industrial components using any one of the Computer Aided Design and Modelling packages. The aim of this subject is to help the student to attain the industry identified competency through practice in CAD software.

OBJECTIVES:

- Prepare 2D Drawing using sketcher or part modelling of any parametric CADsoftware.
- Generate 3D Solid models from 2D sketch or part modelling of any Parametric CAD software.
- Prepare assembly of part models using assembly of any

parametric CAD software.

- Generate orthographic views of 3D solid models/assemblies using drafting of any parametric software.
- > Plot a drawing for given part model/assembly.

Course Outcome

On successful completion of the cour se, the students will be able to attain below Course Outcome (CO):

UNIT	Course outcome	BTL
3F 5305-CO-1	Ability to analyze parametric modeling & Parametric software.	A
3F 5305 -CO-2	Ability to illustrate the part modeling and assembly of parts	A
3F 5305 -CO-3	Ability to analysis the basic part models of CAD Software.	A
3F 5305 -CO-4	Ability to illustrate Orthographic views of 3D solid models	A
3F 5305- CO-5	Ability to evaluate the Plot a drawing for given part	Е
	model / assembly	

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Introduction

Parametric CAD software – sketch – elements – entities: line – circle – arc – ellipse – polygon – text – dimensions – sketch tools – fillet – chamfer – offset – trim – extend– mirror – rotate – block. Partmodelling– reference planes – reference point – reference axes – co-ordinate system – extrude – revolve – swept – helix and spiral –lofts – dome – shell – draft – rib – wrap – intersect – holes – patterns. Assembly – approaches – mate– coincident – sub assembly –rebuild – isolate. Drawing views – Save – Plot – model view – exploded view – projected view – section view – import –export – Appearance – rendering.

Exercises

PART A: Draw the given 3D drawing using 3D modelling commands.

- 1. Model 1
- 2. Model 2
- 3. Model 3
- 4. Model 4
- 5. Model 5
- 6. Model 6

PART B: Draw the part models and assemble the components using 3D modelling.

- 1. Revolving Centre
- 2. Tail stock
- 3. Machine Vice
- 4. Crane hook
- 5. Petrol Engine Connecting Rod
- 6. Pipe Vice

Exercises

PART A: Draw the given 3D drawing using 3D modelling commands.

DETAILLED ALLOCATION OF MARKS

SI. No.	DESCRIPTION	Marks			
Part A –	Part A – 3D Component Modelling				
1	Sketching	15			
2	3D Modelling	15			
Part B – Assemble Drawing Modelling					
3	Sketching / Part modelling	20			
4	Assembly	30			
5	5 Solid Model / Views				
6	Vivavoce	10			
	100				

MODEL QUESTION PAPER

- **1.A.** Draw the given 3D drawing using 3D modelling commands.
 - B. Draw the part models of **Revolving centre** and assemble the components

using 3D modelling.

2.A. Draw the given 3D drawing using 3D modelling commands

B. Draw the part models of **Tail stock** and assemble the components using 3D modelling.

3.A. Draw the given 3D drawing using 3D modelling commands.

B. Draw the part models of **Machine vice** and assemble the components using 3D modelling.

4.A. Draw the given 3D drawing using 3D modelling commands.

B. Draw the part models of **Crane hook** and assemble the components using 3D modelling.

5.A. Draw the given 3D drawing using 3D modelling commands.

B. Draw the part models of **Petrol engine connecting rod** and assemble the components using 3D modelling.

6.A. Draw the given 3D drawing using 3D modelling commands

B. Draw the part models of **Pipe vice** and assemble the components using 3D modelling.

List of equipments

- 1.personal computer 30 Nos
- 2.laser printer 1 No
- 3.software GUI system software, modeling AUTOCAD package (sufficient to the strength)

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Code	: 3F 5211
Term	: V
Course	: THERMAL ENGINEERING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16					∂ weeks	
	Instructions		Examinati			
		on				
COURSE				Marks		
	Hours Hours / / Semester Week	Internal Assessment	Autonomous Examinations	Total	Duration	
THERMAL ENGINEERING PRACTICAL	4	64	25	100*	100	3 Hrs

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Diploma holders in this course are required to experience the performance of air compressors, internal combustion engines and vapor compression refrigerator. The knowledge thus acquired helps them in understanding the concepts of basic thermodynamics.

OBJECTIVES:

- > Determine the flash point, power point and viscosity of oil.
- > Identify the parts of petrol engine and their functions.
- > Identify the parts of diesel engine and their functions.
- > Conduct performance test on petrol engines.
- > Conduct performance test on diesel engines.
- > Identify the parts of a high pressure boiler and their applications.

- > Prepare heat balance sheet for an I.C. Engine.
- Calculate calorific value of fuels.
- Conduct of C.O.P of Refrigerators
- Measure the thermal conductivity
- > Draw the valve timing diagram of four stroke petrol and diesel engine.

Course Outcome

On successful completion of the cour se, the students will be able to attain below Course Outcome (CO):

UNIT	Course outcome	BTL
3F 5211-CO-1	Ability to calculate the different properties of oil	A
3F 5211-CO-2	Ability to calculate the absolute pressure and saturation temperature of mercet boiler and calorific value of junker's gas calorimeter	A
3F 5211-CO-3	Ability to evaluate the volumetric efficiency of air compressor	E
3F 5211-CO-4	Ability to evaluate the performance of petrol and diesel engines	E
3F 5211- CO-5	Ability to evaluate the COP of refrigerator and thermal conductivity measurement	E

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

<u> Part – A:</u>

- Determining flash and fire points of the given oil using open cupapparatus.
- 2. Determining flash and fire points of the given oil using closed cup apparatus.
- 3. Determining the absolute viscosity of the given lubricating

oil using Redwoodviscometer.

- 4. Determining the absolute viscosity of the given lubricating oil using Sayboltviscometer.
- 5. Determining the saturation temperature of water at different absolute pressuresusing Mercet boiler.
- 6. Determining the higher calorific value and lower calorific value of the given gaseous fuel with junkers gas calorimeter.
- 7. Draw the valve timing diagram for four stroke petrol engine

<u> Part – B:</u>

- 1. Load test (performance test) on petrol engine.
- 2. Load test (performance test) on diesel engine.
- 3. Morse test on multicylinder petrol engine.
- 4. Heat balance test on I.C. engine.
- 5. Volumetric efficiency of air compressor.
- 6. COP of refrigerators.
- 7. Thermal Conductivity measurement using guarded plate apparatus

Detailled Allocation of Marks		MARKS
Part A:		
Observation and Tabular Column	5	
Calculations	20	
Result / Graph	10	
Part B:		35
Observation and Tabular Column	10	
Formulae, Calculations	30	
Result / Graph	15	
		55
Viva Voce		10
Total		100

LIST OF EQUIPMENTS

- 1. Open cup apparatus to determine Flash and fire points 2 No
- 2. Close cup apparatus to determine Flash and fire points 2 No
- 3. Redwood viscometer 2 No.
- 4. Saybolt viscometer 2 No.
- 5. Mercet boiler 1 No.
- 6. Junker's gas calorimeter 1 No.
- 7. 4 stroke cycle petrol engine Model 1 No.
- 8. 4 stroke cycle diesel engine Model 1 No.
- 9. Guarded plate apparatus 1 No
- Petrol (or) Diesel engine of any make with following arrangements – 2 No.Load test arrangement Heat balance test arrangement
- 11. Multi cylinder petrol engine of any make with Morse test setup 1 No

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F5306-1
Term	: V
Course Name	: COMPUTER INTEGRATED
	MANUFACTURING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination				
COURSE	Hours /	Hours /	Marks				
	Week Semeste	Semester	Internal Assessment	Autonomous Examinations	Total	Duration	
Computer Integrated Manufacturing Practical	4	64	25	100*	100	3 Hrs.	

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

As per the latest requirements in the Industries this enables to learn the various Concepts of Computer Integrated Manufacturing. They are able to write part program and able operate CNC lathe and Milling machines. They are able to understand the advanced concepts adopted in CIM.

OBJECTIVES:

- > Acquire knowledge in the field of Computer Integrated Manufacturing
- Create 3D Solid models of machine components using modeling software
- Execute and perform machining operations in CNC
 Lathe and CNC Millingmachines.

Course Outcome

On successful completion of the cour se, the students will be able to attain below Course Outcome (CO):

UNIT	Course outcome	BTL
3F5306-1 –CO1	Ability to illustrate the solid modeling of the Geneva Wheel, Bearing Block, Bushed bearing,Gib and cotter joint, Screw Jack, Universal Coupling, and connecting rod and assemble the parts by using CAD.	A
3F5306-1 –CO2	Ability to develop the part program, edit and execute in CNC Turning machine.	С
3F5306-1 -CO3	Ability to develop the part program, edit and execute in CNC milling machine.	С

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Practical

PART A: SOLID MODELLING

Introduction to part modelling – Datum plane – constraint – sketch – dimensioning – extrude

- revolve - sweep - blend - protrusion - extrusion - rib - shell - hole - round

- chamfer - copy - mirror - assembly - align - orient - drawing and detailing

- creating assembly views.

Exercise No. 1. Geneva Wheel

Exercise No. 2. Bearing Block

Exercise No. 3. Bushed bearing

Exercise No. 4. Gib and Cotter joint

Exercise No. 5. Screw Jack

Exercise No. 6. Universal coupling

Exercise No. 7 Connecting Rod

Note: Print the orthographic view and sectional view from the above assembled 3Ddrawing.

PART B: CNC PROGRAMMING AND MACHINING

Introduction:

- 1. Study of CNC lathe, milling.
- 2. Study of international standard codes:G- Codes and M-Codes
- 3. Format Dimensioning methods.
- Program writing –Turning simulator Milling simulator, IS practice – commands menus.
- 5. Editing the program in theCNC machines.
- 6. Execute the program in the CNC machines.

Exercises Note: Print the part program from the simulation software and make theComponent in the CNC machine.

CNC Turning Machine:

Material: M.S / Aluminium / Acrylic fibre / Plastic

- 1. Using Linear and Circular interpolation Create a part program and produceComponent in the Machine.
- 2. Using Stock removal cycle Create a part program for multiple turning operations and produce component in the Machine.
- 3. Using canned cycle Create a part program for thread cutting, grooving andProduce component in the Machine.

CNC Milling Machine

Material: M.S / Aluminum / acrylic fibre / plastic

- 4. Using Linear interpolation and Circular interpolation Create a part program forgrooving and produce component in the Machine.
- 5. Using canned cycle Create a part program for drilling, tapping, counter sinkingand produce component in the Machine.
- 6. Using subprogram Create a part program and produce component in the Machine.

DETAILLED ALLOCATION OF MARKS

PART A: Solid Modelling		
Creation of sketch	15	
Modelling	25	
Accuracy	5	
	45	
PART B: CNC Programming		
Program writing	15	
Editing and Machining	25	
Finish	5	
	45	
Viva voce	10	
Total	100	

LIST OF EQUIPMENTS

- 1. Personal computer 30 Nos.
- 2. 3D Solid Modelling and Simulation software ,CAD software- Sufficient to the strength
- 3. CNC Lathe -2 Nos.
- 4. CNC Mill –2 Nos.
- 5. Consumables Sufficient quantity
- 6. Laser / Inkjet Printer 1 No.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 5306-2
Term	: V
Course Name	: AUTOMOBILE ENGINEERING PRACTICAL

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions		Examination			
COURSE	Hours	Hours /	Marks			
	/ Week	Semester	Internal Assessment	Autonomous Examination	Total	Duration
Automobile Engineering practical	4	64	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Mechanical engineering diploma holders are placed in the supervisor category at the automotive industries. The study of mechanic tools and hands on experience in dismantling, overhauling and assembling of all components will enhance their performance in the manufacturing and service sectors of automobile.

OBJECTIVES:

- > Identify the various tools and their applications used in Automobile.
- > Dismantle and assemble parts of petrol engine.
- > Dismantle and assemble parts of diesel Engine.
- Service oil pump and water pump.

- Service AC fuel pump.
- Service carburetor.
- > Dismantle and assemble fuel injection pump.
- Dismantle and assemble of power transmission and differential system.
- > Overhauling of starter motor and dynamo.
- > Troubleshoot the Electrical circuit in automobile.

Course Outcome

On successful completion of the cour se, the students will be able to attain below Course Outcome (CO):

Course outcome	•	BTL
3F 5306-2 -CO1	Ability to classify the tools used for repair IC engines	U
3F 5306-2 -CO2	Ability to Identify the components of an IC engine including cooling and lubrication system.	U
3F 5306-2 -CO3	Ability to analyze the construction and parts of the power transmission systems and various components involved in it.	A
3F 5306-2 -CO4	Ability to Differentiate types of chassis, steering and brake systems and their functions.	A
3F 5306-2 -CO5	Ability to evaluate the ignition system, generator and auxiliary systems.	A

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Practical

Module No.	Experiments Name

1	Study of mechanics tools—double ended, spanner, ring spanner, sockets, screwdrivers, torque wrench, feeler gauge, cutting pliers, etc. Study of gauges - height gauge, bore gauge, inside and outside micrometers.
	PART- A
2	Engine dismantling, overhauling and assembling (Both S.I. and C.I. engines).
3	Dismantling, overhauling and assembling of sliding mesh, constant meshand synchromesh gearboxes.
4	Dismantling, overhauling, assembling of propeller shaft (universal joint and slip joint) and adjusting backlash, correct teeth contact of crown and pinion of differential unit.
5	Removing rear axle and hub assembly, re-greasing, assembling and adjusting axle and hub endplay
6	Dismantling, overhauling, assembling and adjusting steering gears and checking steering column and play cross shaft end play and backlash of different types of steering gears.
7	Adjusting valve clearance of 'I' head and 'L' type engines.
8	Removing, overhauling and replacing of Lubrication oil pump.
9	Removing, overhauling and replacing of water pump.
10	Dismantling, overhauling, assembling and testing of mechanical fuel pump.
	PART - B
11	Dismantling, inspecting and re-assembling of single cylinder F.I. pump and injectors (Different types).
12	Dismantling, overhauling and assembling of Solex carburetor.
13	Dismantling, overhauling, assembling and adjusting of clutches, use of clutchadjusting fixture.
14	Dismantling, overhauling, assembling and bleeding of hydraulic brakesystem.
15	Removing, overhauling, replacing and adjusting of ignition distributor settingand ignition timing.
16	Dismantling, testing and assembling of starter motor.

17	Dismantling, inspecting, overhauling and assembling of alternator.
18	Dismantling, inspecting, testing and charging the battery (Specific gravitytest, high rate discharge test).
19	Dismantling, inspecting, overhauling and replacing and adjusting of ignition distributor and spark plugs setting-ignition timing.
20	Trace the automobile electrical system with respect to (i) horn relay circuit, (ii) Wiper circuit & explain with neat circuit diagram.
21	Garage equipment-Hydraulic lift, Wheel balancing equipments, tyre changer, Auto scrubbers and High pressure jet cleaner.

DETAILED ALLOCATION OF MARKS

DESCRIPTION		MARKS	
PART A	· ·		
Dismantling Procedure	-	20	
Tools handling methods	-	10	
Assembly / Report	-	20	
PART B			
Dismantling Procedure	-	20	
Tools handling methods	-	10	
Assembly / Report	-	10	
Viva voce	-	10	
TOTAL	-	100	

LIST OF EQUIPMENTS

- 1. Automobile Mechanic's tools-Complete Set 2 Set
- 2. 4 stroke petrol engine- with all accessories 1No
- 3. 4 stroke Diesel engine- with all accessories 1 No
- 4. Internal circlip plier, bearing puller 1 No
- 5. Feeler gauge to check valve clearance, hammer and accessories 1 No
- 6. SOLEX carburetor 1 No

Implemented from 2020 - 2021

- 7. MPFI. 1 No
- 8. Inline Fuel Injection Pump 1 No
- 9. CRDI 1 No
- 10. Injectors. 1 No
- 11. Clutch set arrangement with tools 1 No
- 12. Complete gear box with tools 1 No
- 13. Complete steering arrangement 1 No
- 14. Differential unit with axles 1 No
- 15. Battery 1 No
- 16. Battery Charger 1 No
- 17. Battery Testing unit (Specific gravity) 1 No
- 18. Starter Motor 1 No
- 19. Alternator 1 No
- 20. Dynamo 1 No

PROGRAMME	: DIPLOMA IN MECHANICAL ENGINEERING			
Course Code	: 3F 5306-3			
Term	: V			
Course Name	: Green Energy and Energy Conservation			
	Practical			

TEACHING AND SCHEME OF EXAMINATION

	No of weeks per semester: 16 weeks					
COURSE	Instructions		Examination			
Green Energyand						
Energy	Hours	Hours /	Internal	Autonomous		Duration
Conservation	1	Semester	Assessment	Examinations	Total	
Practical	Week					
	4	64	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

In reducing green house gas emissions, renewable energy sources play an important role.especially the solar energy being the main contribution from renewable energy, it is needless to say that the students must be aware of the performance of solar energy derived from solar panel under different conditions of the day.added to this the course provides an idea about wind and bio gas power generation so that the students will get clear picture on renewable sources.

Objectives:

- To demonstrate the I-V and P-V Characteristics of PV module .
- To show the effect of variation in tilt angle on PV module power.
- To study the characteristics of battery.
- To understand how a solar PV standalone system works
- To workout power flow calculations of standalone PV system AC loadDC loadwith battery.
Department Of Mechanical Engineering

- To understand how to use various electrical measuring equipments.
- To study the different electrical parameters of a monocrystalline andpolycrystalline silicon solar panel
- To study the effect of shading on the output of solar panel.
- To understand and determine the power flow in a solar DC system.

Course Outcome

On successful completion of the cour se, the students will be able to attain below Course Outcome (CO):

UNIT	Course outcome	BTL
3F 5306-3 -CO1	Ability to analyze I-V and P-V characteristics of PV module	A
3F 5306-3 -CO2	Ability to understand characteristics of battery	U
3F 5306-3 -CO3	Ability to calculate power flow calculations of standalone PV system	A
3F 5306-3 -CO4	Ability to understand the different electrical parameters of a monocrystalline and polycrystalline silicon solar panel	U
3F 5306-3 -CO5	Ability to understand effect of shading on the output of solar panel	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Experiments

PART A

- 1. Study and demonstrate the I-V and P-V Characteristics of PVmodule with varying radiation and temperature level.
- 2. Study and demonstrate the I-V and P-V characteristics of series and parallel

combination of PV modules.

- 3. Study and demonstrate the effect of shading on module output power.
- 4. Do a shading analysis on the site where solar PV system needs to be setup.
- 5. Study the wind power generation status in Tamilnadu.
- 6. Study the biogas generation status in Tamilnadu.

PART B

- Conduct experiment to show the effect of variation in tilt angle on PV Module power.
- 2. Conduct the experiment to demonstrate the working of diode asBypass diode and blocking diode.
- 3. Conduct the experiment to draw the charging and discharging characteristics of battery.
- 4. Conduct the experiment for the power flow calculations of standalone PV system of AC load with battery.
- 5. Conduct the experiment for the power flow calculations of standalonePV system of DC load with battery.
- 6. Conduct the experiment to determine the different electrical parameters of a monocrystalline and polycrystalline silicon solar panel.

Part – A Study explanation	30
Part-B	
Procedure	15
Observation / Reading / calculation	35
Result	10
	60
Viva-voce :	10
Total :	100

DETAILED ALLOCATION OF MARKS

S.No.	Description	Qty.
1	150 /160 Wp Polycrystalline Solar PV Modules	2 Nos.
2	340/350 Wp Mono crystalline Solar PV Modules	2 Nos.
3	80 / 90 WpThinfilm Solar PV Modules	2 Nos.
4	1000W/1500W Off-grid Grid Inverter with MPPT ChargeController	1 No.
5	Solar Structure	1 No.
6	Wallmountable ACDB Box	1 No.
7	Earthing kit	3 No.
8	DC Wire, AC Wire, PVC items	1 No.
9	Accessories like MC4 connectors, Lugs, Screws etc	Sufficient quantity
10	Solar System Analyser	1 No.
11	Solar Power Meter	1 No.
12	Solar Module Analyser	1 No.
13	Thermal Imaging Camera	1 No.
14	Drill m/c, Multimeters, Clamp meters, Tools & Tackles,Safety gear	1 Set
15	Electrical Measuring Instruments	Sufficient Quantity
16	Shop Floor Tools	Sufficient Quantity

Equipment / Tools Required

PROGRAMME	:	DIPLOMA IN MECHANICAL ENGINEERING
Course Code	:	3F 5404
Semester	:	V
Course name	:	Entrepreneurship & Startup Practical

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

COURSE	Instructions			Examination		
Entrepreneurship						
	Hours	Hours /	Marks			Duration
& Startup	Tiours	riours/	Internal	Autonomous		Duration
Practical	/	Semest	Assessme	Examinations	Total	
	Week	er	nt			
	4	64	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours:

Unit No	Topics	Hours
I	Entrepreneurship – Introduction and Process	10
II	Business Idea and Banking	10
III	Start Ups, E-Cell and Success Stories	10
IV	Pricing and Cost Analysis	10
V	Business Plan Preparation	10
	Field Visit for Case study	14
	Total	64

RATIONALE:

Development of a diploma curriculum is a dynamic process responsive to the society and reflecting the needs and aspiration of its learners. Fast changing society deserves changes in educational curriculum particularly to establish relevance to emerging socio-economic environments; to ensure equity

of opportunity and participation and finally promoting concern for excellence. In this context the course on entrepreneurship and start ups aims at instilling and stimulating human urge for excellence by realizing individual potential for generating and putting to use the inputs, relevant to social prosperity and thereby ensure good means of living for every individual, provides jobs and develop Indian economy.

OBJECTIVES:

At the end of the study of 5th semester the students will be able to

- To excite the students about entrepreneurship
- Acquiring Entrepreneurial spirit and resourcefulness
- Understanding the concept and process of entrepreneurship
- Acquiring entrepreneurial quality, competency and motivation
- Learning the process and skills of creation andmanagement of entrepreneurial venture
- Familiarization with various uses of human resource forearning dignified means of living
- Know its contribution in and role in the growth and development of individual and the nation
- Understand the formation of E-cell
- Survey and analyze the market to understand customer needs
- Understand the importance of generation of ideas and product selection
- Learn the preparation of project feasibility report
- Understand the importance of sales and turnover
- Familiarization of various financial and non financial schemes
- Aware the concept of incubation and starts ups

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
1	Entrepreneurship – Introduction and Process	12
	Concept, Functions and Importance	
	Myths about Entrepreneurship	
	Pros and Cons of Entrepreneurship	
	Process of Entrepreneurship	
	Benefits of Entrepreneur	
	Competencies and characteristics	
	Ethical Entrepreneurship	
	 Entrepreneurial Values and Attitudes 	
	Motivation	
	Creativity	
	Innovation	
	 Entrepreneurs - as problem solvers 	
	Mindset of an employee and an entrepreneur	
	Business Failure – causes and remedies	
	Role of Networking in entrepreneurship	
2	Business Idea and Banking	12
	 Types of Business: Manufacturing, Trading and Services. 	
	 Stakeholders: sellers, vendors and 	
	consumers andCompetitors	
	E- commerce Business Models	
	 Types of Resources - Human, 	
	Capital andEntrepreneurial	
	tools and resources	
	 Selection and utilization of human 	
	resources andprofessionals, etc.	
	 Goals of Business; Goal Setting 	

	 Patent, copyright and Intellectual property rights 	
	 Negotiations - Importance and methods 	
	Customer Relations and Vendor Management	
	 Size and capital based 	
	classification of business	
	enterprises	
	 Various sources of Information 	
	 Role of financial institutions 	
	 Role of Government policy 	
	 Entrepreneurial support systems 	
	 Incentive schemes for state government 	
	 Incentive schemes for Central governments 	
3	Start ups, E-cell and Success Stories	12
	 Concept of Incubation centre's 	
	 Visit and report of DIC , financial 	
	institutions and otherrelevance	
	institutions	
	 Success stories of Indian and global business legends 	
	 Field Visit to MSME's 	
	 Study visit to Incubation centers and start ups 	
	Learn to earn	
	 Startup and its stages 	
	 Role of Technology – E-commerce and Social Media 	
	Role of E-Cell	
	E-Cell to Entrepreneurship	
IV	Pricing and Cost Analysis	12
	Unit of Sale, Unit Price and Unit Cost - for	
	single product orservice	
	 Types of Costs - Start up. Variable and Fixed 	

	 Income Statement Cash flow Projections Break Even Analysis - for single product or service 	
	• Taxes	
	Financial Business Case Study	
	Understand the meaning and concept of the	
	term	
	Cash Inflow and Cash Outflow Price	
	Calculate Per Unit Cost of a single product	
	Operational Costs	
	Understand the importance and	
	preparation of IncomeStatement	
	 Prepare a Cash Flow Projection 	
	Projections	
	Pricing and Factors affecting pricing.	
	Launch Strategies after pricing and proof of	
V	concept Business Plan Preparation	12
	Generation of Ideas.	
	Business Ideas vs. Business Opportunities	
	 Opportunity Assessment – Factors, 	
	Micro and MacroMarket	
	Environment	
	Selecting the Right Opportunity	
	Product selection	
	New product development and analysis	
	 Feasibility Study Report – Technical 	
	analysis, financialanalysis and	

Department Of Mechanical Engineering

commercial analysis	
 Market Research - Concept, Importance and Process 	
 Market Sensing and Testing 	
 Marketing and Sales strategy 	
Digital marketing	
 Branding - Business name, logo, tag line 	
Promotion strategy	
Business Plan Preparation	
 Social Entrepreneurship as Problem 	
 Solving - Concept and Importance 	
 Risk Taking-Concept Types of business risksExecution of Business Plan 	

DETAILED ALLOCATION OF MARKS

SI. No	DescriptIonP	Marks
Part A	Written Examination - Theory Question and answer	45
	(10 questions x 3 marks:30 marks & (3	
	questions x5 marks: 15 marks)	
Part B	Practical Examination – Submission on Business	40
	Plan/Feasibility Report or Report on Unit 4 & 5	
Part C	Viva voce	15
	Total	100

REFERNCE BOOKS:

- Dr. G.K. Varshney, Fundamentals of Entrepreneurship, SahityaBhawanPublications, Agra – 282002
- Dr. G.K. Varshney, Business Regulatory Framework , SahityaBhawanPublications, Agra - 282002
- Robert D. Hisrich, Michael P. Peters, Dean A. Shepherd, Entrepreneurship ,McGraw Hill (India) Private Limited, Noida – 201301,11 th edition 2013.
- M.Scarborough, R.Cornwell, Essentials of Entrepreneurshipand smallbusiness management, Pearson Education India, Noida – 201301,2018
- CharantimathPoornima M. Entrepreneurship Development and SmallBusiness Enterprises, Pearson Education, Noida – 201301,2018
- Trott, Innovation Management and New Product Development, PearsonEducation, Noida – 201301,2009
- M N Arora, A Textbook of Cost and Management Accounting, VikasPublishing House Pvt. Ltd., New Delhi-110044,2012
- 8. Prasanna Chandra, Financial Management, Tata McGraw Hill educationprivate limited, New Delhi
- I. V. Trivedi, RenuJatana, Indian Banking System, RBSA Publishers, Rajasthan, 2010.
- 10. Simon Daniel, HOW TO START A BUSINESS IN INDIA, BUUKS, Chennai -600018
- 11. RamaniSarada, The Business Plan Write-Up Simplified A practitioners guideto writing the Business Plan, Notion Press MediaPvt. Ltd., Chennai 600095, 2017 edition.

Department Of Mechanical Engineering

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 0005
Term	: V
Course Name	: CONCURRENT CAREER DEVELOPMENT

Topics

Unit	Name of the Topics			
I	National Integration and Awareness			
II	Social Awareness and Community Development			
III	Health and Hygiene			
IV	Environmental awareness and Conservation			
V	Traffic Control Organization			

OBJECTIVES:

- To promote harmony and the spirit of common brotherhood amongst all the people of the country. To safe guard public property and abjure violence.
- To develop the idea of ability and better thinking to work for the betterment of community.
- 3. To prevent illness and have positive health attitude, correct and complete knowledge of health is necessary.
- 4. To develop a world population that is aware of, and concerned about, the environmental and its associated problems
- 5. To provide for the safe, rapid, comfortable efficient, convenient, and environmentally compatible movement of people, goods, and services.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
	Ability to Students to know the responsibility to see	
	that injustice, inequality, oppression; exploitation,	
3F 0006 -CO1	with Obschafte along with rate in the expiret. They are	R
	with. Students play a vital role in the society. They are	
	the guardians of freedom, Justice, equality, ethics and	
	social equilibrium.	
	Ability to To understand social and ethical norms	
3F 0006 -CO2	for behavior, and to recognize family, school, and	U
	community resources and supports.	
3E 0006 -CO3	Ability to Students have the knowledge or skills to	R
	develop good personal hygiene habits on their own.	
	Ability to To understand the fragility of our	
3F 0006 -CO4	environment and the importance of its	U
	protection.	
	Ability to The students will get a vast	
3F 0006 -CO5	understanding on various traffic enforcements	U
	rules and regulations.	

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-

Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Торіс	Hrs.
National Integration and Awareness	
Introduction – Importance of National Integration – Essence of	
national integration : Cultural Integration, Economic	
Integration, Political Integration, Religious Integration, Social	
Integration- Necessity of National Integration : Maintenance of	
peace and harmony, Growth and development of the nation,	
Law and Order, Culture and religious development, dignity	
-	National Integration and Awareness Introduction – Importance of National Integration – Essence of national integration : Cultural Integration, Economic Integration, Political Integration, Religious Integration, Social Integration- Necessity of National Integration : Maintenance of peace and harmony, Growth and development of the nation, Law and Order, Culture and religious development, dignity

	and self respect, welfare and wellbeing of the people-Role of	
	NCC in nation Building.	
II	Social Awareness and Community Development Need of social awareness – Types of Social Awareness :	
	Empathy, Organizational awareness- Service – How to build	
	Social Awareness – Aims of Social Awareness – Different	
	Social Awareness Programmes – Aims of Community	
	development – Different community awareness programmes	
	Health and Hygiene Introduction to the structure of the body – Personal hygiene - Food hygiene –water supply and its purification – Sanitisation – Waste Product/Refuse – Types of waste product – Sources of refuse – Collection and removal of refuse – Preventable diseases – Classification of disease – Preventive measures Yoga –Definition and meaning of Yoga-Principles of Yoga- Asana – Definition, Types, Benefits - Effect of various yogic practices on Respiratory and Circulatory system-Method of performing various asanas –Padmasana, Siddhasana, Gyan Muthra, Suryanamaskar. Physical and Mental heath – Elements of good health – Objectives and scopes of health	
	education – Characteristics of healthy mind, Measures to	
	secure mental health	
	Environmental awareness and Conservation Introduction- Human activities and the environment –	
	Depletion and deterioration – Deforestation – Forest and wild	
	life – Water Resources – Global Warming – Depletion of	
	Ozone layer - Role of the NCC cadets towards the	
	environment – Ecology – Definition and	
	componentsConservation of environment and ecology -	
	Resource depletion – Resource pollution – Environmental	
	damage - Environment, life and ecology - Conservation	

	measures – Methods of managements and conservation of	
	natural resources.	
V	Traffic Control Organization Understanding Road Safety – Importance or road safety:	
	Major causes of road accident – Role of Education sector in	
	road safety - Role of general Community in road safety -	
	Road Safety tips – Safety Devices – Safe and Responsible	
	driving : Getting ready to drive before driving, Physical and	
	mental alertness, Know your vehicle, Know your blind spots,	
	Fasten Your seat belt, Turn on head lights at night and in poor	
	light conditions – Driving License.	

ASSESSMENT:

This is a compulsory credit course. The assessment is to provide a fair state of development of the student, so participation in classroom discussions, etc. will be used in evaluation.

- Final marks = 25% of Assignment mark + 50% of Online exam mark (proctored) + 25 % of External exam (unproctored).
- Unproctored means candidate will be taking the exam from college.
- The overall pass percentage is 40%.

Reference :

- 1. Cadet's Hand Book.
- 2. Public Health And Hygiene, Dr.Sudhar R.Wagh.
- Question Answers Of Environment And Road Safety Awareness Kindle Edition By Brijesh Pathak (Author).
- 4. Environment And Road By Naresh Kumar (Author).
- 5. Traffic Safety And Environment: Conflict Or Integration Author Links Open Overlay Panelburkhard E.Horn(Professor)A. Hh.Jansson.

Department Of Mechanical Engineering

VI TERM

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 6307
Term	: VI
Course Name	: INDUSTRIAL ENGINEERING AND
	MANAGEMENT

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instr	ructions	Examination			
COURSE	Hours	Hours	Marks			
COURCE	/	/	Internal	Autonomous	Total	Duration
	, Week	Seme	Assessment	Examination	TOLAI	
		ster				
Industrial						
Engineering	6	96	25	100*	100	3 Hrs.
and						
Management						

Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.	
l	Plant engineering and plant safety	18	
II	Work study, method study and work measurement	18	
III	Production planning and quality control	18	
IV	Principles of management and personnel management	18	
V	Material Management and Professional Ethics	17	
Test & Model Exam			
	Total	96	

RATIONALE:

In the Indian Economy, Industries and enterprises always find prominent place. After globalization, the government of India has announced liberalization policy of starting an enterprise which is resulted in the mushroom growth of industries. The present day students should be trained not only in manufacturing processes but also in managing activities of industries. Training must be imparted to students not only to shape them as technicians but also as good managers.

The knowledge about plant, safety, work study techniques, personnel management and financial management will definitely mould the students as managers to suit the industries. Due to the presence of such personalities the industries will leap for better prosperity and development.

OBJECTIVES:

- > Explain the different types of layout and compare them.
- > Appreciate the safety aspects and its impacts on an organization.
- > Compare different productivity improvement technique.
- > Explain different work measurement techniques.
- Estimate standard time for a job.
- > Explain production planning and control and its functions.
- Study the role of PPC as a tool for cost control.
- Prepare process control charts.
- > Explain the principles of management and functions of management.
- > Compare different organizational structure.
- > Explain the selection and training of staff.
- Create an awareness about the social responsibilities of students.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

Department Of Mechanical Engineering

	Course outcome	BTL
3F6301 -CO1	Ability to report productivity concept to engineering application.	R
3F6301 -CO2	Ability to Describe the implementation of work and time study at a work place.	R
3F6301 -CO3	Ability to Recognize the objectives, functions, applications of process planning control and forecasting techniques.	U
3F6301 -CO4	Ability to estimate job evaluation for personal management.	U
3F6301 -CO5	Ability to Discuss about material management and professional rights, employee rights and intellectual property rights, safety and risk involved in engineering projects.	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Theory

Unit	Name of the Topics	Hours
I	Plant Engineering: Plant - Introduction—Selection of a site of	18
	industry -Plant Layout - Principles of good layout – Types –	
	Process, product fixed position layout - Techniques to improve	
	layout - Principles of material handling equipment - Plant	
	maintenance – Importance - Breakdown maintenance,	
	Preventive maintenance and Scheduled maintenance.	
	Plant Safety: Importance – accident – causes and cost of an	
	accident – accident proneness – Personal factors – prevention	
	of accidents – safetyawareness measures - industrial disputes	
	 settlement of industrial disputes – Collective bargaining, 	
	Conciliation, Meditation, arbitration – Indian Factories act	
	1948 and its provisions related to health, welfare andsafety.	

	Work Study: Productivity – Standard of living – method of	
	improving productivity – objectives – Importance of good	
	working conditions.	
	Method study: Definition - objectives -selection of job for	
	method study	
	-Basic procedure for conduct of method study-Tools used -	
	Operation process chart, Flow process chart, two handed	
	process chart, Man machine chart, string diagram and flow	
	diagram. Process Orientation, Various Stages in process,	18
	Overall Management.	
	Work measurement: Definition - Basic procedure in making	
	a time studyemploys rating factor - Application of time	
	allowances - Rest, Personal, Process, Special and Policy	
	allowances - Calculation of standard time - Problems -	
	Basic concept of production study - Techniques of work	
	measurement – Ratio delay study, Synthesis from standard	
	data, analytical estimating and pre-determined motion time	
	system (PMTS).	
	Production planning and control: Introduction - Major	18
	functions of production planning and control—Pre-planning –	
	Methods of forecasting- Routing and Scheduling-	
	Dispatching and controlling - Concept of Critical path	
	method (CPM) Description only. Production – types –	
	Massproduction, Batch production and job order production -	
	Characteristics –	
	Economic Batch Quantity (EBQ) - break even analysis -	
	Principle of product and process planning - make or buy	
	decision - problems.	
	Quality Control: Definition – Objectives – Types of inspection	
	- First piece, Floor and centralized inspection - Advantages	
	and disadvantages. Quality control – statistical quality control –	

	types of measurement - method of variables - Method of	
	attributes - uses of X, R, p and c charts	
	 operating characteristics curve (o.c curve) – Sampling 	
	inspection - single and double sampling plan - concept of	
	reliability, reliability vs quality reliability frequency, MTBF,	
	MTTR availability – bath tub curve – Concept of ISO	
	9001:2008 Quality management system registration /	
	Certification procedure – Benefits of ISO to the organization.	
	TQM, FMEA., Continuous Improvement Process	
IV	Principle of Management: Definition of management -	18
	Administration – Organization – F.W. Taylor's and Henry	
	Favol's Principles of Management – Functions of manager –	
	Types of organization - Line staff Taylor's pure functional	
	types – Line and staff and committee type – Directing –	
	Leadership - Styles of Leadership - Qualities of a good	
	Leadership – Styles of Leadership – Quanties of a good	
	Modern management techniques dust in time. Total quality	
	monogement/TOM) Quality sirely Zero defect concert 55	
	management (TQM) – Quality Circle – Zero delect concept - 55	
	concept –management information systems.	
	Personnel Management: Responsibility of human resource	
	management - selection procedure - Training of workers -	
	Apprentice training – On the job training and vestibule school	
	training - Job evaluation and merit rating - Objectives and	
	importance – Wages and salary administration – Components	
	of wages – Wage fixation – Type of wage payment – Halsey's	
	50% plan, Rowan's plan and Emerson's efficiency plan -	
	Problems	
V	Material Management: Objectives of good stock control	17
	system - ABC analysis of inventory - Procurement and	
	consumption cycle - Minimum stock, Lead time, Reorder	
	Level - Economic order quantity problems - supply chain	

management – Introduction – Purchasing procedure – store keeping – Bin card.

Professional Ethics: Basic human values - truth, right conduct, love, non-violence and peace - humanity and character. (iii)Core areas of ethics: social ethics, personal and trustworthiness. ethics integrity honesty. loyalty. (iv)Character: definition, individuality of a person from 'good' and bad qualities. (v)Traits of good character: Sense of duties and obligation to one's own profession. Adherence to truth and principle, excellence team work with a good rapport with teachers, colleagues and subordinate. Self-discipline, responsibilities and accountabilities, selflessness.

Reference Books

- 1."O.P.Khanna" "Industrial Engineering and Management", Revised Edition publications (P) Ltd -2004, New Delhi – 110002.
- 2.T.R.Banga & S.C.Sharma, Engineering Economics and Management, Mc graw Hil,New Delhi
- 3.Heinz Weihrich, Harold Koontz, Management, A global perspective, McGraw Hill,New Delhi,New edition 2006.
- Joseph L.Massie, Essentials of Management, Prentice Hall of India, New Delhi

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 6308
Term	: VI
Course Name	: MECHATRONICS

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

COURSE	Instructions		Ex	amination		
	Hours	Hours /	Ι	Marks		
	/Week	Semester	Internal Assessment	Autonomous Examinations	Total	Duration
Mechatronics	5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Name of the Topic	Hours
I	Introduction, sensors & transducers	14
II	Signal conditioning and data presentation systems	14
III	Actutation systems, input/output systems	14
IV	Programmable logic controller (plc)	14
V	Design examples & advanced applications in mechatronics	14
	Revision	3
	Cycle Tests and Model Examination	7
	Total	80

RATIONALE

Today the technical field seeks interdisciplinary approach for all engineering applications. This subject imparts knowledge on different input, Processing, outputdevices with examples, automated systems so that a student can solve any interdisciplinary problems in most efficient manner by interlinking all disciplines

OBJECTIVES

- > Define Mechatronics and state its role in industries.
- > Compare the different types of sensors/transducers Describe the basic
- > actuation systems and their importance.
- Describe various basic Mechanical and Electrical actuation systems.
- > Explain the various basic pneumatic and hydraulic actuation systems.
- > Construct the basic mechanical system building blocks.
- > Construct basic electrical system building blocks.
- > Construct basic fluid system building blocks.
- > Explain the structure of PLC and its functions.
- > Write PLC program for simple applications.
- > Apply Mechatronics design to real life case studies.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

Course outcome		
3F6308 -CO1	Ability to identify the specifications and characteristics of sensors and sensors for real time applications.	R
3F6308 -CO2	Ability to summarize signal conditioning processes and data presentation device	U
3F6308 -CO3	Ability to describe actuation system and interface requirements	U
3F6308 -CO4	Ability to describe the ladder logic circuits for simple automation system	U
3F6308 -CO5	Ability to recognize mechatronics system with the help of microprocessor , PLC and other electrical and electronic circuits.	R

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours		
I	INTRODUCTION, SENSORS & TRANSDUCERS	14		
	Introduction – Systems – Measurement Systems – Control			
	Systems - Microprocessor Based Controllers Examples -			
	Mechatronics approach. Measurement System terminology			
	- Displacement, Position & Proximity Sensors - Velocity and			
	Motion Sensors – Force Sensors – Fluid Pressure Sensors			
	- Flow Sensors - Liquid Level Sensors - Temperature			
	Sensors – Light Sensors – Selection of Sensors.			
11	SIGNAL CONDITIONING AND DATA	14		
	PRESENTATIONSYSTEMS.			
	Signal Conditioning; Introduction-Signal Conditioning Processes Operational			
	Amplifier-Inverting Amplifier, summing amplifier, integrating			
	amplifier, differential amplifier and Comparator. Amplification			
	Errors. Protection- Filtering-Wheatstone Bridge. Digital			
	Signals-Analogue to Digital Conversion, Digital to Analogue			
	Conversion. Multiplexers-Digital Multiplexers, Time Division			
	Multiplexing.			
	Data Presentation:			
	Introduction- Data Presentation Elements -Analogue to			
	Digital Meters, Analogue Chart Recorders-Cathode Ray			
	Oscilloscope. Visual Display Unit. Printers-Magnetic			
	Recording-Magnetic Disks. Light Indicators-LED displays,			
	Liquid Crystal Displays, Data Logger			
	ACTUTATION SYSTEMS INPUT/OUTPUT SYSTEMS	14		
	Actutation systems:			
	Mechanical actuation systems - Introduction – type of motion			
	- freedom and constrains. Kinematic chain - the four - bar			
	chain- the slider crank mechanism, mechanical aspects			

	of motor selection. Electrical actuation systems- Introduction	14
	– Mechanical switches – relays, solid – state switches –	
	diodes, thyristors and triacs, bipolar transistors, solenoids.	
	Interfacing : Input/ Output ports - Interface requirements:	
	Buffers, Handshaking, Polling and interrupts, Serial	
	interfacing- Introduction to PIA - Serial communications	
	interface -Example of interfacing of a seven-segment	
	display with adecoder.	
IV	PROGRAMMABLE LOGIC CONTROLLER (PLC)	14
	Definition – Basic block diagram and structure of PLC –	
	Input/ Output processing – PLC Programming: Ladder	
	diagram, its logic functions, latching and sequencing - PLC	
	mnemonics - Timers, internal relays and counters - Shift	
	registers – Master and jump controls – Data handling –	
	Analog input/output – Selection of PLC.	
V	DESIGN EXAMPLES & ADVANCED APPLICATIONS	14
	INMECHATRONICS	
	Design Examples Design process stages - Traditional Vs Mechatronics	
	designs - Possible design solutions: Timed switch, Wind-	
	screen wiper motion, Bath room scale - Case studies of	
	mechatronics systems: A pick- and-place robot, Car park	
	barrier, Car engine management system, Automatic Camera	
	and Automatic Washing Machine only.	
	Advanced Applications In Mechatronics	
	Sensors for condition monitoring systems of production	
	systems - Examples of monitoring methods: Vibration	
	monitoring, Temperature monitoring, Wear behavior	
	monitoring - Mechatronics control in automated	
	manufacturing: Monitoring of manufacturing processes, On-	
	line quality monitoring, Model- based systems, Hardware-in-	
	the-loop simulation, Supervisory control in manufacturing	
	inspection, Integration of heterogeneous systems.	

Reference Books :				
SI. No.		Name of the Book	Author	Publisher
1.		Introduction to Mechatronics	V.Bolton	New edition – 2015. Addsion Wesley Longman Inc.
	2.	A Text Book of Mechatronics	R.K.Rajput	Tata mcgraw Hil
	3.	Mechatronics System Design	Devdas Shetty & Kolk	New edition – 2010. Pws publishing co
	4.	Electromechanics	James H.Harter	New edition – 1995. Prentice-Hal of India
	5.	Control system Engineering	Colin D.Simpson,	New edition – 1995 Prentice Hall of India

Programme	:	DIPLOMA IN MECHANICAL ENGINEERING
Course Code	:	3F 6309-1
Term	:	VI
Course Name	:	WELDING TECHNOLOGY

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Instructions			Examination		
COURSE	Hours	Hours /	Marks			
	/	Semester	Internal	Autonomous	Total	Duration
			Assessment	Examination		
	Week					
Welding Technology	05	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

Unit	Name of the Topic	Hours
I	Welding Processes and Equipment	14
II	Special Welding Processes	14
III	Metallurgy of Welding	14
IV	Weldability of Ferrous and Non – Ferrous Metals	14
V	Welding Economy, Applications and Testing	14
	Revision	3
	Cycle tests and model examination	7
	Total	80

RATIONALE

Diploma technicians have a wide scope in fabrication industries. The knowledge about welding equipments, processes, weld metallurgy, nonferrous metal joining processes and testing of weldments are pre requests for the fabrication industries.

OBJECTIVES

- > Explain the different types of welding process and equipments.
- > Appreciate the safety aspects of welding.
- > Compare different welding technique.
- > Study the special welding process.
- > Explain heat flow and temperature distribution around weldment.
- > Explain heat affected zone and grain size control.
- > Study the welding economy and principles of weld design.
- > Explain the defects in welds.
- > Compare various non-destructive testing methodologies.
- > Analyze quality control for quality assurance.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL	
3F 6309-1-1	Ability to Understand the different types of welding	U	
	process and equipments, special welding process.		
3F 6309-1-2	Ability to Compare different welding technique.	А	
3F 6309-1-3 Ability to Understand the concepts of heat flow and		U	
	temperature distribution around weldment, heat		
	affected zone and grain size control.		
3F 6309-1-4	Ability to Knowledge of defects in welds.	R	
3F 6309-1-5	Ability to Compare various non-destructive testing	А	
	methodologies.		

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours			
I	WELDING PROCESSES AND EQUIPMENTS	14			
	Classification of welding processes - Gas welding				
	- oxy - acetylene welding- gas welding techniques -				
	gas welding equipment — welding torch – types. Cutting				
	torch – types. Manufacturing of oxygen gas and				
	acetylene gas - Arc welding - Arc stability - Arc blow -				
	mechanism of arc blow - factors affecting arc blow - Arc				
	welding power sources – Phenomenon of arching - arc				
	voltage – characteristics of welding power source.				
	Resistance welding – spot welding – seam				
	welding – projection welding - Gas cutting, Plasma				
	cutting, Gouging - Brazing – Soldering. Welding safety –				
	safety recommendations for installation and operation of				
	arc welding and cutting equipment, gas welding and				
	cutting equipment.				
II	SPECIAL WELDING PROCESSES				
	Submerged arc welding –TIG welding –MIG				
	welding -CO2 welding - Comparison between MIG and				
	MAG welding - Electro slag welding –Electro gas				
	welding - Plasma arc welding –Friction welding –				
	Friction stir welding - Principle of operation -equipment				
	-merits and demerits - applications. Ultrasonic welding				
	– explosive welding - atomic hydrogen welding –				
	electron beam welding -laser beam welding -definition,				
	concept principle of operation and applications. Under				
	water welding.				
- 111	METALLURGY OF WELDING	14			
	Welding arc – Heat flow and temperature				
	distribution in and around weld metal -temperatures				
	zones -metallurgical effects of welding -weld metal				
	solidification - absorption of gases by welds and their				

	effects- gas metal reactions - porosity in welds -	
	thermal effects of welding on parent metal - heat	
	affected zones - grain size control -weld cracking -	
	types. Corrosion of welds, weld decay, dilution. Residual	
	stresses - types - causes -effects of thermal stresses-	
	control of thermal stresses. Stress relief heat treatment-	
	need for treatment.	
IV	WELDABILITY OF FERROUS AND NON – FERROUS	14
	METALS	
	Concept of weldability – Welding Processes	
	used for welding wrought iron – welding of grey cast iron	
	, malleable cast iron, nodular cast and alloy cast iron -	
	Welding of low carbon steels, high carbon steels -	
	welding of steel castings - welding of alloy steels,	
	stainless steels. Welding of Aluminium and its alloys,	
	copper and its alloys, magnesium and its alloys -	
	welding of Inconel, cadmium – welding of dissimilar	
	metals – welding of plastics.	
V	SITE WELDING AND TESTING OF WELDS	14
	Welding at open site. Site welding - Site	
	welding Vs. Shop welding - Environmental effects in	
	site welding - Site welding Quality control.	
	Defects in welds -causes and remedies -	
	welding distortion – control of welding distortion.	
	Testing of welds – stages of weld inspection	
	and testing – inspection before welding, during welding	
	and after welding - Destructive testing of weld – tensile	
	test, bend test, impact test, nick break test , hardness	
	test, etch test - Non -destructive testing of weld -	
	visual inspection, leak test, radiography inspection,	
	magnetic particle inspection, liquid penetrant inspection,	
	ultrasonic inspection, eddy current testing	

Reference Books :					
SI.No.	Name of the Book	Author	Publisher		
1.	AWS Welding handbook Vol I & Vol II	Arthur L. Phillips	New edition – 1960 American welding society		
2.	Arc Welding	R.J Sacks	New edition – 2004 American welding society		
3.	Welding Methods Metallurgy	Jackson	Griffin publisher		
4.	Welding Technology	O.P Khanna.	New edition – 2015. Dhanpat Rai & Sons		
5.	Welding Technology	Richard L. Little.	New edition – 2017. McGraw Hill Publishers		

1.	www.nptel.ac.in
2.	www.me.emu.edu.tr/me364/ME364_combining_fusion.pdf
3.	www.slideshare.net

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 6309-2
Term	: VI
Course Name	: REFRIGERATION AND AIR-CONDITIONING

TEACHING AND SCHEME OF EXAMINATION

No of weeks per semester: 16 weeks

	Ins	tructions	Examin ation			
COURSE	Hours /	Hours /	N	larks		Duration
	Week	Semester	Internal	Autonomous	Total	Duration
			Assessment	Examination		
Refrigeration And	05	80	25	100*	100	3 Hrs.
Air - Conditioning						

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Topics and Allocation of Hours

UNIT	Торіс	Hrs.
I	Refrigeration system and refrigerationEquipments	14
II	Vapour compression refrigeration system and Vapour absorption refrigeration system	14
	Refrigerant flow controls, refrigerants and Lubricants, applications of refrigeration	14
IV	Psychrometry and comfort air conditioning	13
V	Air conditioning systems and cooling load Calculations	13
	Test & Model Exam	7
	Total	75

RATIONALE:

Requirement of human comfort, maintenance of machines and preserving Perishables through air conditioning is very essential. Hence learning the study of refrigeration principles, refrigeration system, Concept of air-conditioning and methods of facilitates quality design of air conditioners are essential.

OBJECTIVES:

- > Explain the working of open and closed air system of refrigeration.
- > Describe the working and construction of compressors used for airconditioning
- > Explain the vapour compression refrigeration system.
- > Explain the vapour absorption refrigeration system.
- > Compare the properties and applications of various refrigerants.
- > Define the parameters used for air conditioning.
- > To Use the psychometric chart.
- > Estimate the cooling load for the given requirement.
- > Explain the industrial application of refrigeration

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
3F6309-2 -CO1	Ability to evaluate tonnes of refrigeration.	U
3F6309-2 -CO2	Ability to estimate the C.O.P of vapour compression system, vapour absorption system with different vapour cycles and equipments.	U
3F6309-2 -CO3	Ability to discuss the working principle, types and applications of a refrigeration system.	U
3F6309-2 -CO4	Ability to solve psychometric properties with different process.	А
3F6309-2 -CO5	Ability to interpret the cooling load calculations, winter and summer air conditioning.	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Theory

Name of the Topics	Hours
REFRIGERATION SYSTEM	14
Thermodynamic state of a pure substances,	
modes of heat transfer -laws of heat transfer -	
mechanisms of production of cold - unit of refrigeration	
-types of refrigeration -reversed Carnot cycle - C.O.P	
of heat engine-heat pump- refrigerating machine –	
principle of working of open and closed air system of	
refrigeration – advantages and disadvantages –	
problems.	
REFRIGERATION EQUIPMENTS	
Compressor – principle of working and	
constructional details of reciprocating and rotary	
compressors, hermetically and semi hermetically	
sealed compressors- condensers-principle of working	
and constructional details of air cooled and water	
cooled condensers, evaporative condensers-	
advantages and disadvantages - natural and forced	
draught cooling towers. Evaporators- natural	
circulation and forced circulation type - principle of	
working constructional details	
VAPOUR COMPRESSION REFRIGERATION SYSTEM	14
Principle of working of vapour compression system –	
analysis of vapour compression cycle using T-s	
diagram and p-H diagram- refrigerating effect-	
compression work - C.O.P - effect of superheating and	
under cooling - problems – effect of – evaporative	
pressure - condenser pressure - liquid -vapour	
refrigeration heat exchangers - advantages and	
disadvantages of superheating and under cooling-use	
of flash chamber and accumulator	
	Name of the Topics REFRIGERATION SYSTEM Thermodynamic state of a pure substances, modes of heat transfer –laws of heat transfer – mechanisms of production of cold - unit of refrigeration –types of refrigeration –reversed Carnot cycle - C.O.P of heat engine-heat pump- refrigerating machine – principle of working of open and closed air system of refrigeration – advantages and disadvantages – problems. REFRIGERATION EQUIPMENTS Compressor – principle of working and constructional details of reciprocating and rotary compressors, hermetically and semi hermetically sealed compressors- condensers-principle of working and constructional details of air cooled and water cooled condensers, evaporative condensers- advantages and disadvantages - natural and forced draught cooling towers. Evaporators- natural circulation and forced circulation type – principle of working constructional details VAPOUR COMPRESSION REFRIGERATION SYSTEM Principle of working of vapour compression system – analysis of vapour compression cycle using T-s diagram and p-H diagram- refrigerating effect- compression work - C.O.P - effect of superheating and under cooling - problems – effect of – evaporative pressure - condenser pressure - liquid –vapour refrigeration heat exchangers - advantages and disadvantages of superheating and under cooling–use of flash chamber and accumulator

	VAPOUR ABSORPTION REFRIGERATION SYSTEM	
	Simple absorption system – Electrolux system – Solar	
	absorption systemNH3 & lithium Bromide system -	
	absorption system comparison with mechanical	
	refrigeration system.	
	REFRIGERANT FLOW CONTROLS,LUBRICANTS	
	ANDAPPLICATION OF REFRIGERATION	
III	Capillary tube-automatic expansion valve-thermostatic	14
	expansion valve-solenoid valve-evaporator pressure	
	regulator -suction pressure regulator-selection of a	
	refrigerant-properties and applications of following	
	refrigerants SO ₂ , CH ₄ , F ₁₁ , F ₁₂ , F ₂₂ , and NH ₃ –lubricants	
	used in refrigeration and their applications-Cryogenics.	
	APPLICATIONS OF REFRIGERATION	
	Slow freezing -quick freezing- cold storage-	
	frozen storage- freeze drying -dairy refrigeration -ice	
	cream cabinets-ice making - water cooler, milk cooler,	
	bottle cooler-frost free refrigeration, Cooling Laptops	
	and other electronic Gadgets	
	PSYCHROMETRY AND COMFORT AIR	13
IV	CONDITIONING	
	Definitions of dry air, moist air, water vapour, Avogadro's	
	law, Dalton's law of partial pressure - dry and wet bulb	
	temperature - dew point - humidity - specific and	
	absolute - relative humidity - degree of saturation -	
	enthalpy of moist air- adiabatic saturation of air by	
	evaporation of water- psychometric chart and its uses -	
	psychometric processes – sensible heating and cooling -	
	humidifying and heating - dehumidifying and cooling -	
	adiabatic cooling with humidification - total heating or	
	cooling processes -sensible heat factor	

	- by pass factor with simple problems -IAQ principles -	
	governing optimum effective temperature - comfort chart-	
	design consideration	
	AIR CONDITIONING SYSTEMS	
	Equipment for air conditioning and insulation factors –	
	air purification - temperature control - humidity control - dry	
	and wet filters- centrifugal dust collector - air washer humidifier	
	- dehumidifier - fans and blowers - grills and registers -	
	summer and winter air conditioning, window type air	40
V	conditioner – central plant system – properties of ideal	13
	insulator, types of insulating materials -air distribution and	
	duct systems- tools and installation, servicing and	
	maintenance of R & AC systems.	
	COOLING LOAD CALCULATIONS	
	Different heat sources – conduction heat load –	
	radiation load of sun - occupants load - equipment load -	
	infiltration air load – miscellaneous heat sources –fresh air load	
	- simple problems.	

Reference Books

- 1. Refrigeration and air conditioning, P.L. Ballaney, Khanna Publishers, 2B, North Market, Naisarak, New Delhi 110 006.
- 2. Refrigeration and air conditioning, V.K. Jain, new edition ,2019.
- 3. Industrial Refrigeration Hand Book, Wilbert F. Steocker, new edition ,1995.
- 4. A course in refrigeration and air conditioning, Domkundwar, new edition ,2018.
- 5. Principles of refrigeration, Dossat,
- Home refrigeration and air conditioning, Audels, Theo.Audel & Co. publisher, 199 Edn.49, West 23rd Street, New York. – 1998
- 7. Refrigeration and air conditioning, C.P Arora, new edition ,2017.
- 8. Cryogenic systems Randell Fd Barron. new edition ,1985
| PROGRAMME | : DIPLOMA IN MECHANICAL ENGINEERING |
|-------------|---------------------------------------|
| Course Code | : 3F 6309-3 |
| Term | : VI |
| Course name | : Industrial Robotics and 3D Printing |

No of weeks per semester: 16 weeks

COURSE	Instructions			Examination		
				Marks		
Industrial	Hours	Hours /	Internal	Autonomous		Duration
Robotics	/Week	Semester	Assessment	Examinations	Total	
and 3DPrinting	5	80	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

Topics and Allocation of Hours

Unit No	Topics	Hours
l	Fundamentals of Robot Technology	12
II	Drive Systems, End Effecters, Sensors and Machine Vision System	12
III	Robot Programming, Robot Applications in Maufacturing	12
IV	Introduction and Design for Additive Manufacturing	18
V	Additive Manufacturing Processes	19
	TEST AND REVISION	07
Total		80

RATIONALE:

Rapid industrialization and globalization needs industries to be more competitive and deliver cost effective quality products. This needs industries to implement flexible manufacturing systems where Robotic technology plays major role. Hence study of robotic technology is very essential. 3Dprinting is often utilized when manufacturers need to create a product accurately, quickly and at a low quantity. This has lead to 3D printers being brought in to prototype industrial robots, helping to aid the development of better, more efficient robots in the industrial sector.

OBJECTIVES:

- Understand fundamentals of robotics
- > Acquire knowledge structure and elements of robot
- > Gain knowledge on controller and various drives used in robotics
- > Develop knowledge on role of sensors and vision system
- Acquire skill to program and control robot
- > Understand to adopt robot to various industrial applications.
- To acquire the knowledge on 3D Printing and design principles for additive manufacturing
- To understand the principles of latest manufacturing processes in AdditiveManufacturing

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

Course outcome		
3F 6309-CO1	Ability to explain Basic configuration of Robotics, Robot components, Degrees of freedom ,Links and joints, Classification of robots, Work envelope and Work Volume, and PUMA robot	U
3F 6309-CO2	Ability to describe the Pneumatic drives, Hydraulic drives Mechanical drives, End effecters, Grippers, Position sensors Proximity sensors, Touch Sensors and Range Sensors	U
3F 6309-CO3	Ability to explain Forward kinematics, Inverse kinematics, Robot programming, Robot programming languages and Robot applications.	U
3F 6309-CO4	Ability to write Additive Manufacturing, Principle of AM Process, Direct and Indirect process, Prototyping and Manufacturing and Tooling,	U
3F 6309-CO5	Ability to discuss Photo polymerization, Powder Bed Fusion, Extrusion Based System, Sheet Lamination Process, Droplet formation technologies, Three Dimensional Printing, Beam Deposition Process, Applications of AM technologies in Automotive	U

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Unit	Name of the Topics	Hours
I	Fundamentals of Robot Technology Introduction -	12
	History of robot- Definitions- Basic configuration of	
	Robotics – Robot Components –	
	Manipulator, End effecter, Driving system, Controller and	
	Sensors – Degrees of freedom – Links and joints	
	- Types of joints - Joint notation scheme - Pitch, Yaw, Roll	
	- Classification of robots - Work envelope and Work	
	Volume – Effect of structure on Control ,Work envelop and	
	Work volume- Introduction to PUMA robot- Robot controller	
	Configuration - Four types of controls - Open loop and	
	closed loop controls – Speed of response and stability –	
	Precision of movements: Spatial resolutions, accuracy and	
	repeatability.	
II	Drive Systems, End Effecters, Sensors and	12
	Machine Vision System	
	Pneumatic drives – Hydraulic drives – Mechanical drives –	
	Electrical drives - Stepper motors, DC Servo motors and	
	AC Servo motors– Applications and Comparisons of Drives.	
	End effecters – Grippers – Mechanical Grippers, Magnetic	
	Grippers, Vacuum Grippers- Selection and design	
	considerations in robot gripper- Requirements of Sensors -	
	Position sensors: LVDT, Resolvers, Optical encoders-	
	Proximity sensors: Inductive, Capacitive, Ultrasonic and	
	Optical proximity sensors- Touch Sensors - Range	
	Sensors- Machine Vision System: Sensing & Digitizing	
	Image Data – Image Processing and Analysis – Application	
III	Robot Programming, Robot Applications In	12
	Manufacturing Forward kinematics, Inverse	
	kinematics and differences – Forward	

	kinematics and Reverse kinematics of manipulators with	
	Two and Three degrees of freedom – Derivations.	
	Robotprogramming –Lead through programming, Textual	
	programming- Teach Pendant for Robot system- Robot	
	programming languages – Motion commands, Sensor	
	commands, End effecter commands. Robot applications -	
	Material handling- Spot welding - Arc welding - Spray	
	painting –Assembling – Finishing-AGV-RGV.	
IV	Introduction and Design for Additive Manufacturing	18
	Introduction to AdditiveManufacturing	
	Additive Manufacturing – 3D Printing – Rapid	
	prototyping – Overview – Need – Additive manufacturing Vs	
	CNC Machining - Development of Additive Manufacturing	
	Technology - Principle of AM Process - Generalised	
	Additive Manufacturing Process Chain- Classification -	
	Benefits – Direct and Indirect process, Prototyping,	
	Manufacturing and Tooling	
	Design for Additive Manufacturing	
	Design tools: Data processing - CAD model preparation -	
	STL file- Part orientation and support structure generation -	
	Model slicing-Tool path generation. Design for Additive	
	Manufacturing: Concepts and objectives - AM unique	
	capabilities - DFAM for part quality improvement – strategies	
	 Design Rules – Quality aspects – Software for AM – 	
	MIMICS, etc.	10
V	Additive Manufacturing Processes Photo polymerization	19
	and Powder Bed Fusion Processes Photo	
	polymerization:	
	SLA - Photo curable materials - Process - reaction rates -	
	Fusion: SIS - Process description - nowder fusion	
	machanism material food system Presses Persmeters	
	Materials and Applications Electron Boom Malting	
	Extrusion Read And Short Lemination Brancess	
	EXITUSION Dased And Sheet Lamination Processes.	

Extrusion Based System: FDM – Introduction - Basic	
Principle – plotting and path control - Materials -	
Applications and Limitations- Bio-extrusion. Sheet	
Lamination Process: LOM – Materials - Gluing or	
Adhesive bonding - Thermal bonding – Ultrasonic AM.	
Printing Processes And Beam Deposition Processes	
Droplet formation technologies - Continuous mode -	
Drop on Demand mode - Three Dimensional Printing -	
Advantages – Bio- plotter - Beam Deposition Process:	
LENS- Process description - Material delivery -	
Process parameters – Materials –Benefits.	
Applications of AM technologies in Automotive,	
Manufacturing, Architectural, Healthcare, and	
Consumer products.	

Reference Books:

- Industrial Robotics Technology, Programming and Applications, P.Groover, MCGraw Hill, 2001
- Chua C.K., Leong K.F., and Lim C.S., "Rapid prototyping: Principles andapplications", Third edition, World Scientific Publishers, 2010. Ian Gibson, David W. Rosen, Brent Stucker "Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing" Springer, 2010.
- 3. Robotics Control, Sensing, Vision and Intelligence, Fu.K.S.Gonzalz.R.C., and Lee C.S.G, McGraw-Hill Book Co., 1987
- 4. Robotics for Engineers, Yoram Koren, McGraw-Hill Book Co., 1992
- 5. Robotics and Image Processing, Janakiraman.P.A, Tata McGraw-Hill, 1995
- 6. Andreas Gebhardt "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing" Hanser Gardner Publication 2011.

- 7. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer, 2006.
- 8. Liou L.W. and Liou F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press,2007.
- 9. Tom Page, "Design for Additive Manufacturing" LAP Lambert Academic Publishing, 2012.
- 10. Amit Bandyopadhyay, and Susmita Bose, "Additive Manufacturing", CRC Press. new edition ,2015.
- 11. John O Milewski., "Additive Manufacturing of Metals: From Fundamental Technology to Rocket Nozzles, Medical Implants, and Custom Jewellery", Springer Series in Materials Science. new edition ,2017.
- 12. Sabrie Soloman. "Additive Manufacturing: Advanced Manufacturing Technology in 3d Print Deposit", new edition ,2014.
- 13. David Ian Wimpenny and Pulak M Pandey, "Advances in 3D Printingand Additive Manufacturing Technologies" new edition ,2019.
- 14. Andreas Gebhardt, Hanser, "Understanding Additive Manufacturing" new edition ,

Programme	:	DIPLOMA IN MECHANICAL ENGINEERING
Course Code	:	3F 6310
Term	:	VI
Course Name	:	PROCESS AUTOMATION PRACTICAL

No of weeks per semester: 16 weeks

	Instructions		Examination			
COURSE	Hours	Hours /	Marks			
	/	Semester	Internal	Autonomous	Total	Duration
	Week		Assessment	Examination	Total	
Process						
Automation	5	80	25	100*	100	3 Hrs.
Practical						

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

The Automation is being the order of the day to improve the production with high quality consciousness. Such automation involves the use of programmable logic controllers. This course aims to impart knowledge about automatic operations using programmable logic controllers with pneumatic kits.

OBJECTIVES:

- Use PLC system and its elements for process control
- Write ladder logic for logic controls such as AND, OR
- Familiarize the working of function blocks in PLC
- Use ON Delay timer to control a motor.
- Use OFF –Delay timer to control a motor.
- Use counter function block(Up counter and Down Counter)
- Control the automatic operation of pneumatic cylinder using PLC

- Control Sequential operation of pneumatic cylinder using PLC
- Sense the physical quantities by using sensors.
- Dismantle and assemble fuel injection pump.
- Dismantle and assemble of power transmission and differential system.
- Overhauling of starter motor and dynamo.
- Troubleshoot the Electrical circuit in automobile.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
3F6310 -CO1	Ability to observe the pneumatic system operation and its Components	U
3F6310 -CO2	Ability to Contrast the PLC system and its elements for process Control.	A
3F6310 -CO3	Ability to apply the logic, timer and counter operation.	А
3F6310 -CO4	Ability to test the control the automatic and sequential operations using PLC.	А
3F6310 -CO5	Ability to compare the physical quantities by using sensors.	А

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Practical

Module No.	Experiments Name
1	Study of PLC systems and its elements
	PART-A
2	Direct operation of a motor using latching circuit.
3	Operation of a motor using 'AND' logic control.
4	Operation of a motor using 'OR' control.
5	On – Delay control of a motor.

6	Off – Delay control of a motor
	PART-B
7	Automatic operation of a Double acting cylinder – single cycle
8	Automatic operation of a Double acting cylinder – Single cycle – forward, time delay, return.
9	Automatic operation of Double acting cylinder – Multi Cycles
10	Automatic operation of Double acting cylinder – N cycles (using counter functions block).
11	Sequential operation of a Double acting cylinder and a motor.
12	Sequential operation of a two double acting cylinders for the sequence A+,B+,B-,A-
	PART-C
13	Measurement of Temperature using sensors Thermocouple.
14	Measurement of Flow using sensors.
15	Measurement of Displacement using sensors
16	Measurement of Temperature using sensors Thermistor

DETAILLED ALLOCATION OF MARKS

SCHEME OF VALUATION

DESCRIPTION		MARKS
PART A		
Procedure / Circuit diagram	-	05
Ladder diagram / Programming	-	10
Execution	-	10
PART B	L L	
Procedure / Circuit diagram	-	10
Ladder diagram stimulation/ wiring	-	20
Execution	-	15
PART C	L L	
Procedure	-	10
Observation & Result	-	10
Viva voce	-	10
TOTAL	-	100

LIST OF EQUIPMENTS

1. Hydraulics Trainer Kit – 1No.

(All Cylinders, Control Valves, Limit switches and other accessories)

2. Pneumatic Trainer Kit with PLC. – 2 Nos.

(All Cylinders, Control Valves, Limit switches and other accessories)

- 3. Trainer kit for measuring Temperature.
- 4. Trainer kit for measuring Flow.
- 5. Trainer kit for measuring Displacement.

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 6311 – 1
Term	: VI
Course Name	: WELDING TECHNOLOGY PRACTICAL

No of weeks per semester: 16 weeks

	Inst	ructions	Examinatio n			
COURSE	SE Hours Hours / Inte / Semester Ass		Internal Assessmen	Marks Board Examination	Total	Duration
Welding Technology Practical	vveeк 5	80	25	100*	100	3 Hrs.

* Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
3F6311 -CO1	Ability to Understand the fundamental principles of special arc welding process	U
3F6311 -CO2	Ability to Understand the principles of metal joining process for arc and gas welding	А
3F6311 -CO3	Ability to use of various types tools, equipment for different operations in the welding shop	R
3F6311 -CO4	ability to knowledge know the weldability of engineering materials like metals, non-metals, ferrous metals and non-ferrous metals.	A
3F6311 -CO5	ABILITY TO Understand the knowledge of plasma arc in metal joining and cutting process	А

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-

Bloom's revised taxonomy Level)

EXERCISES DETAILS – JOB PRACTICE:

Practice of different methods of gas welding

- 1. Left hand welding and Right hand welding.
- 2. Vertical welding.
- 3. Welding of Thin section.
- 4. Tube Butt joint 1G and 5G

BRAZING:

- 1. Square butt joint D.H. position
- 2. Square butt joint Copper to brass or S.S. to MCS by Brazing.

DEMO EXERCISES

- 1. Soldering the component made in the sheet metal section.
- 2. Brazing the component fabricated in the sheet metal section.
- 3. Preparation of pipe joints using gas welding
- 4. Repair of Steel, Aluminum alloy and Copper alloy.

II. ARC

Review about the various types Arc welding equipment and accessories. Demonstration about selection of electrodes and setting the current, how to start an arc.

EXERCISES DETAILS – JOB PRACTICE:

- 1. Butt joints by both polarities to identify the weld difference.
- 2. Single V Butt welding Down hand position.
- 3. Double V Butt welding Down hand position.
- 4. Single V Fillet welding Vertical position.
- 5. Fillet welding Vertical position.
- 6. Butt welding Overhead position.
- 7. Tube Butt joint 1G.

- 8. Tube Butt joint 2G.
- 9. Tube Butt joint 3G.
- 10. Welding of Cast Iron / Aluminium / Stainless Steel.
- 11. Flare V-groove butt weld (Two Rods).
- 12. Flare bevel-groove butt weld (Rod over plate).
- 13. Repairing of defect weld bead by "Gouging" operation.

DEMO TOPICS:

- 1. Welding of High carbon steel.
- 2. Welding of dissimilar materials -SS and MS joints.
- 3. NDT testing LP, MP.
- 4. Discussion on X-ray samples.

III. MIG WELDING

Introduction to TIG welding equipment and its parts.

EXERCISES DETAILS – JOB PRACTICE:

- 1. Square butt joint on position horizontal
- 2. Fillet weld outside & inside corner position vertical
- 3. Square butt joint over head position.

IV.TIGWELDING

Introduction to TIG welding equipment and its parts. Various gases used in TIG welding operations.

EXERCISES DETAILS – JOB PRACTICE:

- 1. Square Butt joint Down hand position.
- 2. Corner Butt joint –Vertical position.
- 3. Tube Butt joint 1 G / 2 G / 5 G.
- 4. Square butt joint on aluminum sheet.
- 5. Welding of Stainless steel.

DEMO EXERCISES

- 1. Welding of High carbon steel by gas welding.
- 2. Repairing of C.I. shaft by ARC welding.
- 3. Spot welding.
- 4. Metal spraying.
- 5. Welding Simulation practice.

6.

V. PROFILE

PROFILE CUTTING PRACTICE:

- 1. Gas cutting Triangle
- 2. Plasma cutting Half round, Step cutting.
- 3. C.I. cutting Gas cutting process.

SCHEME OF EVALUATION

Note: All the exercises have to be completed. Two exercises will be given for examination. All the exercises should be given in the question paper and students are allowed to select by a lot. Record note book should be submitted during examination.

ARC / GAS Welding	: 45 marks
Edge preparation	: 15
Welding / Cutting	: 15
Penetration / Reinforcement	: 10
Joint / Finish	: 05
SPECIAL WELDING / CUTTING	: 45 marks
Edge preparation	: 15
Welding / Cutting	: 15
Penetration / Reinforcement	: 10
Joint / Finish	: 05
Viva-voce	: 10 marks
Total	: 100 marks

LIST OF EQUIPMENTS

01.	Hand Gloves	-	10 pairs
02.	Leather Apron	-	10 nos
03.	Welding helmet	-	10 nos.
04.	Welding hand shield	-	10 nos.
05.	Wire brush	-	15 nos.
06.	Gas welding Goggles with Colour glass	-	10 nos.
07.	White glass	-	25 nos.
08.	Colour glass	-	25 nos.
09.	Arc welding colored glasses 11 A	-	25 nos.
10.	Arc welding colored glasses 12 A	-	25 nos.
11.	Chipping hammer	-	10 nos.
12.	Chipping blade	-	10 nos.
13.	Earth clamp	-	10 nos.
14.	Electrode holder	-	6 nos.
15.	Tongs	-	10 nos.
16.	Hammer ball peen 1 kg with handle	-	10 nos.
17.	Spark lighter	-	3 nos.
18.	Scriber 150 mm	-	10 nos.
19.	Chisel cold flat 19 mm x 150mm	-	15 nos.
20.	Centre punch 9 mm x 127 mm	-	6 nos.
21.	Dividers 200 mm	-	3 nos.
22.	Caliper outside 150 mm	-	3 nos.
23.	Hacksaw frame fixed 300 mm	-	6 nos.
24.	Number punch 6 mm	-	1 set.

25.	set letter punch 6 mm	-	1 set.
26.	File half bastard 350 mm.	-	15 nos.
27.	C- Clamps	-	6 nos.
28.	Swage block	-	1 no.
29.	Steel rule	-	10 nos.
30.	Tip cleaner set	-	3 nos.
31.	Weld measuring gauge fillet and butt	-	3 nos.
32.	H.P. Welding torch No. 2 with nozzle nos. 1,2,3, 5 & 7 2 sets	-	1 no.
33.	H.P. Cutting blow pipe with cutting nozzles	-	1 no.
34.	Welding rubber hose, oxygen 8mm. dia x 5mts. long	-	2 set
35.	Welding rubber hose Acetylene 8mm. dia x 5mts. long	-	2 set
36.	Gas Pressure regulator oxygen double stage	-	1 no.
37.	Gas Pressure regulator acetylene double stage	-	1 no.
38.	Oxygen Cylinder	-	3 nos.
39.	Acetylene Cylinder	-	3 nos.
40.	CO ₂ Cylinders	-	3 nos.
41.	Argon Cylinders	-	3 nos.
42.	CO ₂ regulator with flow meter	-	1 set
43.	Argon regulator with flow meter		1 set
44.	Welding Generator DC rotary set 200-300 amps with all accessories		1 no.
45.	Welding Transformer (or) Inverter based welding machine with all accessories (300A, OCV 60 – 100 V, 60% duty cycle)		4 nos.

46	Thirstier based welding machine	1 no.
47.	TIG welding power source with water cooled torch	2 nos.
48.	MIG welding power source	2 nos.
49.	Plasma cutting Power source	1 no.
50.	Air compressor suitable for above air plasma cutting system.	1 no.
51.	AG 7 Grinder	5 nos.
52.	Pedestal grinder fitted with coarse and medium grain size grinding wheels dia. 300 mm	1 no.
53.	Oven, electrode drying 0 to 250°C, 10 kg capacity	1 no.
54.	Spot welding machine to 15 KVA with all accessories	1 no.
55.	Bench vice	10 nos.

Programme	:	DIPLOMA IN MECHANICAL ENGINEERING
Course Code	:	3F 6311 -2
Term	:	VI
Course Name	:	REFRIGERATION AND AIR- CONDITIONING
		PRACTICAL

No of weeks per semester: 16 weeks

	Ins	tructions	ions Examination			
COURSE	Hours	Hours /	Marks			
	/ Week	Semester	Internal	Autonomous	Total	Duration
		Assessment	Assessment	Examination	TOLAI	
Refrigeration						
and						
Air	Б	80	25	100*	100	2 ∐ro
conditioning	5	80	25	100	100	3 115.
practical						

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks.

RATIONALE:

Since the use of refrigerators and air conditioning systems for domestic, commercial and industrial application increases day by day, diploma technicians are expected to know the construction features, test procedures and service procedures of them.

OBJECTIVES:

- Identify the various tools used in R & AC
- Demonstrate the construction and working of window air conditioner
- Demonstrate the construction and working of split type air conditioner
- Set parameters for comfortable operation of an air conditioner.

- Determine the C.O.P of air conditioner.
- Determine the capacity of window air conditioner.
- Describe the wiring of refrigerator and coolers.
- Perform servicing on air conditioner.

Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
3F6311-CO1	Ability to observe the various types of tools, size of copper, steel tubes and various operations.	U
3F6311-2-CO2	Ability to discuss the construction , features of the refrigeration & air conditioning system.	A
3F6311-2 -CO3	Ability to calculate the C.O.P of various types of refrigeration system.	A
3F6311-2-CO4	Ability to estimate the efficiency and capacity of air conditioner, cooling tower.	A
3F6311-2 -CO5	Ability to analyse the defects in refrigeration & air conditioning system.	A

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

Contents: Practical

PART A:

Introduction to Test procedures – C.O.P of thermostatic expansion valve, automatic expansion valve ,capillary tube – C.O.P of sealed system from electrical measurements – Capacity of a Window AC - Efficiency of a Cooling tower – leaks test in a Spilt AC - Remedies –Detect the failures – Flush test – Recharge.

Exercise No. 1. Determine the refrigerating effect, C.O.P and the compressor capacity of a open type system with Thermostatic expansion valve, Capillary tube, Automatic Expansion Valve.

Exercise No. 2. Determine the C.O.P of sealed system by using electrical measurements.

Exercise No. 3. Determine the capacity of a window air conditioner. Exercise No.

4. Determine the efficiency of a cooling tower.

Exercise No. 5. Conduct Leak tests in a split air conditioning system, detect the failures and suggest the remedies. Conduct the Refrigerant Charge Test.

Exercise No. 6. Conduct the flush test to remove the contaminants of refrigerationsystem And Recharge.

PART B:

Introduction: Introduction to Copper & steel tube - basic workshop operations – basic tools – construction & features of the Domestic refrigerators , Water cooler , Window AC – Proper methods of setting & adjust of Thermostats ,Low pressure and high pressure cut-outs ,Thermostatic expansion valve ,Automatic expansion valve –Wiring – Service tools – Maintenance – Causes –Common faults in R &AC.

Exercise No. 1. Study the various sizes of copper and steel tubing. To study the various tools used for operations..

Exercise No. 2. Study and carry out the various operations on copper and steeltubing–Flaring, Swaging and Soldering methods used in R& A.C.

Exercise No. 3. Study the methods of construction & features of the following:

a)Domestic Refrigerators. b)water cooler c)Window ac

Exercise No. 4. Study the methods to set and adjust the following a) Thermostats, b)Low pressure and high pressure cut-outs c) Thermostatic expansion valve d)Automatic Expansion Valve.

Exercise No. 5.Conduct the Wiring of refrigerator, water cooler, desert cooler, RoomAC, Packaged AC ,Panel board etc.,

Exercise No. 6. Conduct the service to change refrigerant into service cylinder fromStorage cylinder.

Exercise No. 7. Conduct the service to Evaluate the entire system.

Exercise No. 8. Conduct the service to pump down the system and to purge air from the system.

Exercise No. 9. Conduct the service to check the oil level in the compressor and tracethe common faults in R& A.C units and their remedies.

DETAILED ALLOCATION OF MARKS

PART A

Procedure	-	10
Formulae / Ob Calculation /R	servation - esult -	20 20
PART B		
Description / F	Procedure -	15
Tool handling	-	15
Conclusion / F	Report -	10
Viva voce	-	10
TOTAL	-	100

TOOLS:

Mechanics tool set - Tube cutter - Tube bender type - Tube bender spring
 Swagingtool - Flaring block - Flaring nut - Pinching tool - Capillary tube
 testing gauge - Blow Lamp

SERVICE TOOLS:

Gas cylinder with receiver valve and key - Charging System - Blow lamp -Stem key -Spring remover - Service valve - 't' connector - High pressure gauge - Compound gauge - Leak detector - Soldering and Brazing

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 6311 -3
Term	: VI
Course Name	: INDUSTRIAL ROBATICS & 3D PRINTING
	PRACTICAL

No of weeks per semester: 16 weeks

COURSE	Instructions		Examination			
			Marks			
Industrial	Hours	Hours /	Internal	Autonomous		Duration
Robotics	/Week	Semester	Assessment	Examinations	Total	
and 3D						
Printing Practical	5	80	25	100*	100	3 Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result. RATIONALE

The evolution of 3D printing has been a rapid growth in the number of companies adopting the technology.soft robos have received an increasing attention due to their advantages of high flexibility and safety for human operators but the fabrication is a challenge.recently 3D printing has been used a key technology to fabricate soft robots because of high quality and printing multiple materials at the same time.th experiments offered in this practical will achieve the above objective.

OBJECTIVES

- Study of Robot / Study of robot simulation software
- To study the components required.
- To study the techniques of programming for various industrial manufacturing applications.
- Prepare a record of work done.

- Acquire knowledge in the field of Additive Manufacturing
- · Explain the various concepts of Solid Modelling

Create STL files to manufacture components using 3D Printer
Course Outcome

On successful completion of the course, the students will be able to attain below Course Outcome (CO):

	Course outcome	BTL
3F 6311–CO1	Ability to develop the robot program, simulation and execution of the Position recording using Cartesian co- ordinate system, Position recording using Polar co- ordinate system.	С
3F 6311–CO2	Ability to Create the model of Gear Train, Sun-planetary gear mechanism, Geneva Gear & Ratchet mechanism and Slide-crank mechanism by GUI System Software and produce the above by using 3D Printing.	С
3F 6311–CO3	Ability to develop the Pick and place the objects, Pick and stack the objects, Spray painting practice, Spot welding practice, Arc welding practice, Assembling practice, Profile cutting practice and Machine loading and unloading practice with time delay in 6 Axis Robot.	С

Legends: R = Remember U= Understand; A= Apply and above levels (BTL-Bloom's revised taxonomy Level)

DETAILED SYLLABUS

3D Printing : Getting to know the User Interface of the Modelling software – Home Screen – Navigating the main Screen – Options Bar – Application Menu& Quick Access Toolbar – Describe the function of a sketch - Describe the various types of sketches. Create sketches of 3D models. Basic Modelling Considerations – Describepart creation within the design process. Add placed features to existing parts. Createcomplex shapes by sweeping or lofting profiles. Assemblies - Managing the assemblies - Assemble a mechanical piece of equipment using constraints. STL files – introduction – conversion of parts from other file formats to STL file – AdditiveManufacturing – types of 3D Printers – orientation and positioning of parts - producing 3D working models using 3D Printers

PART A- Robot Programming

- Position recording using Cartesian co-ordinate system (No. of positions 9)
- 2. Position recording using Polar co-ordinate system -

(No. of positions - 9)

- 3. Pick and place the objects No. of objects 6)
- 4. Pick and stack the objects (No. of objects 6)
- 5. Spray painting practice (Area 300mm x 300mm)
- 6. Spot welding practice (No. of spots 9)
- 7. Arc welding practice (Length of weld 50 mm)
- 8. Assembling practice (Minimum 3 Components)
- 9. Profile cutting practice (Complicated profile combination of lines and arcs)
- 10. Machine loading and unloading practice with time delay (No. of times 9)

PART B - 3D Printing

- 1. Create the model and produce the Gear Train in 3D printing.
- 2. Create the model and produce the Sun-planetary gear mechanism.
- 3. Create the model and produce the Geneva Gear & Ratchet mechanism.
- 4. Create the model and produce the Slide-crank mechanism.

Note: Every student is asked to design and produce only one component of an assembly. After the completion of the product, individual parts are checked for its precision and matting in the assembly. Hence group exercises can be given. The models can be scaled according to the print area of the 3D Printer

DETAILLED ALLOCATION OF MARKS

SI.	Performance Indicator	Marks		
No.				
	Part A – Robot Programming			
1	Robot Program	20		
2	Simulate / Execution	30		
3	Result	10		
	Part B – 3D Prinitng			
4	CAD - Modelling	15		
5	3D Printing	15		
6	Vivavoce	10		
	Total	100		

LIST OF EQUIPMENTS

Personal computer :		10Nos.6 Axis Robot :		
		1		
No.				
3D Printer	:	1 No.		
Software	:	GUI System Software		
	:	Modelling package / 3DPrinter-		
		Sufficient to the strength.		

Programme	: DIPLOMA IN MECHANICAL ENGINEERING
Course Code	: 3F 6405
Term	: VI
Course Name	: PROJECT WORK AND INTERNSHIP

No of weeks per semester: 16 weeks

COURSE	Instructions		Examination				
			Marks				
	Hours	Hours /	Internal	Autonomous		Dur	ation
Project Work and Internship	/Week	Semester	Assessment	Examinations	Total		
	6	96	25	100*	100	3	Hrs.

*Examinations will be conducted for 100 marks and it will be reduced to 75 marks for result.

RATIONALE:

This subject 'Project Work and Internship" is the continuation of the previuos semester subjects. The students are to implement the detailed project plan, which they have prepared. This project are generally an integration of the various types of skills acquired during their course of study. Hence it is essential that students are given opportunity to develop and integrate the highly essential industry oriented competencies and skills. This subject build up greater confidence to face in the world of work.

OBJECTIVES:

• Implement the theoretical and practical knowledge gained through the curriculum into an application suitable for a real practical working environment preferably in an industrial environment.

Department Of Mechanical Engineering

- Implement the planned activity as a team.
- Take appropriate decisions on collected information.
- Carryout cooperative learning through synchronous guided discussions within the class in key dates, a synchronous documents haring and discussions, as well as to prepare collaborative edition of the final project report.

Project Work and Internship:

The students of all the Diploma Courses have to do a Project Work as part of the Curriculum and in partial fulfillment for the award of Diploma by the State Board of Technical Education and Training, Tamil Nadu. In order to encourage students to do worthwhile and innovative projects, every year prizes are awarded for the best three projects i.e. institution wise, region wise and state wise.

The Project work must be reviewed twice in the same semester. The project work is approved during the V semester by the properly constituted committee with guidelines.

a) Internal assessment mark for Project Work and Internship:

Project Review I	 10 marks
Project Review II	 10 marks
Attendance	 05 marks
Total	 25 marks

Proper record should be maintained for the two Project Reviews and preserved for one semester after the publication of Board Exams results. It should be produced to the flying squad and the inspection team at the time of inspection/verification.

Department Of Mechanical Engineering

b) Allocation of Marks for Project Work and Internship in

Autonomous Examinations:

Total	100* marks	
Internship Report	20 marks	
Viva Voce	30 marks	
Report	25 marks	
Demonstration/Presentation	25 marks	

*Examination will be conducted for 100 marks and will be converted to 75 marks.

c)Internship Report:

The internship training for a period of two weeks shall be undergone by every candidate at the end of IV / V semester during vacation. The certificate shall be produced along with the internship report for evaluation. The evaluation of internship training shall be done along with final year "Project Work & Internship" for 20 marks. The internship shall be undertaken in any industry / Government or Private certified agencies which are in social sector / Govt. Skill Centres / Institutions / Schemes.

A neatly prepared PROJECT REPORT as per the format has to be submitted by individual student during the Project Work and Internship Autonomous examination.